VBM (eV) | CBM (eV) | Band gap (eV) | $E_{\rm hull}$ (eV/atom) |
|
---|---|---|---|---|
Li$_{3}$InCl$_{6}$ | 0.48 | 3.84 | 3.36 | 0.055 |
Li$_{3}$InCl$_{0.33}$Br$_{5.67}$ | 0.12 | 2.46 | 2.34 | 0.055 |
Li$_{3}$InCl$_{2.5}$F$_{3.5}$ | $-0.04$ | 3.46 | 3.50 | 0.053 |
Li$_{3}$In$_{0.83}$Ga$_{0.17}$Cl$_{6}$ | 0.48 | 3.79 | 3.31 | 0.061 |
Electrochemical stability range (V) | Electrochemical stability width (V) |
|
---|---|---|
Li$_{3}$InCl$_{6}$ | 2.28–4.42 | 2.14 |
Li$_{3}$InCl$_{0.33}$Br$_{5.67}$ | 2.17–3.14 | 0.97 |
Li$_{3}$InCl$_{2.5}$F$_{3.5}$ | 2.94–4.43 | 1.49 |
Li$_{3}$In$_{0.83}$Ga$_{0.17}$Cl$_{6}$ | 2.32–4.25 | 1.93 |
600 K (mS$\cdot$cm$^{-1})$ | 900 K (mS$\cdot$cm$^{-1})$ | 1200 K (mS$\cdot$cm$^{-1})$ | 1500 K (mS$\cdot$cm$^{-1})$ | 300 K (mS$\cdot$cm$^{-1})$ |
|
---|---|---|---|---|---|
Li$_{3}$InCl$_{0.33}$Br$_{5.67}$ | – | 297.63 | 549.00 | 720.19 | 0.79 |
Li$_{3}$InCl$_{2.5}$F$_{3.5}$ | 237.91 | 1153.56 | 1351.92 | 3140.43 | 2.01 |
Li$_{3}$In$_{0.83}$Ga$_{0.17}$Cl$_{6}$ | 127.10 | 693.06 | 1063.61 | 2120.74 | 0.64 |
[1] | Bruce P G, Freunberger S A, Hardwick L J, and Tarascon J M 2012 Nat. Mater. 11 172 | Erratum: Li–O2 and Li–S batteries with high energy storage
[2] | Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, and Shao-Horn Y 2016 Chem. Rev. 116 140 | Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
[3] | Famprikis T, Canepa P, Dawson J A, Islam M S, and Masquelier C 2019 Nat. Mater. 18 1278 | Fundamentals of inorganic solid-state electrolytes for batteries
[4] | Croce F, Appetecchi G B, Persi L, and Scrosati B 1998 Nature 394 456 | Nanocomposite polymer electrolytes for lithium batteries
[5] | Murugan R, Thangadurai V, and Weppner W 2007 Angew. Chem. Int. Ed. 46 7778 | Fast Lithium Ion Conduction in Garnet‐Type Li7 La3 Zr2 O12
[6] | Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, and Mitsui A 2011 Nat. Mater. 10 682 | A lithium superionic conductor
[7] | Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, and Hasegawa S 2018 Adv. Mater. 30 1803075 | Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries
[8] | Xu R C, Xia X H, Wang X L, Xia Y, and Tu J P 2017 J. Mater. Chem. A 5 2829 | Tailored Li2 S–P2 S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries
[9] | Zhou L, Tufail M K, Yang L, Ahmad N, Chen R J, and Yang W 2020 Chem. Eng. J. 391 123529 | Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries
[10] | Mwizerwa J P, Zhang Q, Han F, Wan H, Cai L, Wang C, and Yao X 2020 ACS Appl. Mater. & Interfaces 12 18519 | Sulfur-Embedded FeS2 as a High-Performance Cathode for Room Temperature All-Solid-State Lithium–Sulfur Batteries
[11] | Chen T, Zhang L, Zhang Z X, Li P, Wang H Q, Yu C, Yan X L, Wang L M, and Xu B 2019 ACS Appl. Mater. & Interfaces 11 40808 | Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping
[12] | Xu R C, Xia X H, Li S H, Zhang S Z, Wang X L, and Tu J P 2017 J. Mater. Chem. A 5 6310 | All-solid-state lithium–sulfur batteries based on a newly designed Li7 P2.9 Mn0.1 S10.7 I0.3 superionic conductor
[13] | Trevey J E, Gilsdorf J R, Miller S W, and Lee S H 2012 Solid State Ionics 214 25 | Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries
[14] | Zhu Z Y, Chu I H, and Ong S P 2017 Chem. Mater. 29 2474 | Li3 Y(PS4 )2 and Li5 PS4 Cl2 : New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations
[15] | Ujiie S, Inagaki T, Hayashi A, and Tatsumisago M 2014 Solid State Ionics 263 57 | Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides
[16] | Zhang N, Ding F, Yu S, Zhu K, Li H, Zhang W, Liu X, and Xu Q 2019 ACS Appl. Mater. & Interfaces 11 27897 | Novel Research Approach Combined with Dielectric Spectrum Testing for Dual-Doped Li7 P3 S11 Glass-Ceramic Electrolytes
[17] | Choi S J, Choi S H, Bui A D, Lee Y J, Lee S M, Shin H C, and Ha Y C 2018 ACS Appl. Mater. & Interfaces 10 31404 | LiI-Doped Sulfide Solid Electrolyte: Enabling a High-Capacity Slurry-Cast Electrode by Low-Temperature Post-Sintering for Practical All-Solid-State Lithium Batteries
[18] | Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, and Liang C 2015 J. Am. Chem. Soc. 137 1384 | An Iodide-Based Li7 P2 S8 I Superionic Conductor
[19] | Hart G L W and Forcade R W 2008 Phys. Rev. B 77 224115 | Algorithm for generating derivative structures
[20] | van de Walle A, Asta M, and Ceder G 2002 Calphad 26 539 | The alloy theoretic automated toolkit: A user guide
[21] | Walle A and Ceder G 2002 J. Phase Equilib. 23 348 | Automating first-principles phase diagram calculations
[22] | Sang J W, Yu Y R, Wang Z, and Shao G S 2020 Phys. Chem. Chem. Phys. 22 12918 | Theoretical formulation of Li3a+b Na Xb (X = halogen) as a potential artificial solid electrolyte interphase (ASEI) to protect the Li anode
[23] | Huang Y Y, Yu Y R, Xu H J, Zhang X D, Wang Z, and Shao G S 2021 J. Mater. Chem. A 9 14969 | First-principles formulation of spinel-like structured Li(4−3x) Yx Cl4 as promising solid-state electrolytes to enable superb lithium ion conductivity and matching oxidation potentials to high-voltage cathodes
[24] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[25] | Fontaine D D 1994 Solid State Phys. 47 33 | Solid State Physics
[26] | Ducastelle F 1993 Order and Phase Stability in Alloys. In: Terakura K and Akai H (eds) Interatomic Potential and Structural Stability. Springer Series in Solid-State Sciences (Berlin: Springer) vol 114 p 133 | Springer Series in Solid-State Sciences
[27] | Sanchez J M, Ducastelle F, and Gratias D 1984 Physica A 128 334 | Generalized cluster description of multicomponent systems
[28] | Zunger A 1994 First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds. In: Turchi P E A and Gonis A (eds) Statics and Dynamics of Alloy Phase Transformations. NATO ASI Series (Boston: Springer) vol 319 p 361 | NATO ASI Series
[29] | Connolly J W D and Williams A R 1983 Phys. Rev. B 27 5169 | Density-functional theory applied to phase transformations in transition-metal alloys
[30] | Li X N, Liang J W, Luo J, Norouzi Banis M, Wang C H, Li W H, Deng S X, Yu C, Zhao F P, Hu Y F, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Adair K R, and Sun X L 2019 Energy & Environ. Sci. 12 2665 | Air-stable Li3 InCl6 electrolyte with high voltage compatibility for all-solid-state batteries
[31] | Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, and Ceder G 2013 Comput. Mater. Sci. 68 314 | Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
[32] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[33] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[34] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[35] | Wang V, Xu N, Liu J C, Tang G, and Geng W T 2021 Comput. Phys. Commun. 267 108033 | VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code
[36] | Ong S P, Cholia S, Jain A, Brafman M, Gunter D, Ceder G, and Persson K A 2015 Comput. Mater. Sci. 97 209 | The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles
[37] | Ong S P, Wang L, Kang B, and Ceder G 2008 Chem. Mater. 20 1798 | Li−Fe−P−O2 Phase Diagram from First Principles Calculations
[38] | Richards W D, Miara L J, Wang Y, Kim J C, and Ceder G 2016 Chem. Mater. 28 266 | Interface Stability in Solid-State Batteries
[39] | Zhu Y Z, He X F, and Mo Y F 2015 ACS Appl. Mater. & Interfaces 7 23685 | Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
[40] | Wang Q T, Ma X F, Liu Q, Sun D F, and Zhou X Z 2023 J. Alloys Compd. 969 172479 | Fluorine-doped Li3InCl6 to enhance ionic conductivity and air stability