[1] | Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901 | Electronic structure of possible nickelate analogs to the cuprates
[2] | Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 | Superconductivity in an infinite-layer nickelate
[3] | Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D F, Miura M, Kourkoutis L F, and Hwang H Y 2020 Nano Lett. 20 5735 | A Superconducting Praseodymium Nickelate with Infinite Layer Structure
[4] | Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, and Ariando A 2022 Sci. Adv. 8 eabl9927 | Superconductivity in infinite-layer nickelate La1−x Cax NiO2 thin films
[5] | Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 | Superconducting Dome in Infinite Layer Films
[6] | Osada M, Wang B Y, Lee K, Li D F, and Hwang H Y 2020 Phys. Rev. Mater. 4 121801 | Phase diagram of infinite layer praseodymium nickelate thin films
[7] | Zeng S W, Yin X M, Li C J, Chow L E, Tang C S, Han K, Huang Z, Cao Y, Wan D Y, Zhang Z T, Lim Z S, Diao C Z, Yang P, Wee A T S, Pennycook S J, and Ariando A 2022 Nat. Commun. 13 743 | Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors
[8] | Yang C, Ortiz R A, Wang Y, Sigle W, Wang H G, Benckiser E, Keimer B, and van Aken P A 2023 Nano Lett. 23 3291 | Thickness-Dependent Interface Polarity in Infinite-Layer Nickelate Superlattices
[9] | Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, and Cheng J G 2022 Nat. Commun. 13 4367 | Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films
[10] | Gu Q Q and Wen H H 2022 Innovation 3 100202 | Superconductivity in nickel-based 112 systems
[11] | Pan G A, Ferenc Segedin D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova Carrizales D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160 | Superconductivity in a quintuple-layer square-planar nickelate
[12] | Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493 | Signatures of superconductivity near 80 K in a nickelate under high pressure
[13] | Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 | Effective Hamiltonian for the superconducting Cu oxides
[14] | Luo Z H, Hu X W, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001 | Bilayer Two-Orbital Model of under Pressure
[15] | Gu Y H, Le C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con] | Effective model and pairing tendency in bilayer Ni-based superconductor La$_3$Ni$_2$O$_7$
[16] | Pardo V and Pickett W E 2011 Phys. Rev. B 83 245128 | Metal-insulator transition in layered nickelates La Ni O ( 0.0, 0.5, 1)
[17] | Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501 | Correlated Electronic Structure of under Pressure
[18] | Cao Y Y and Yang Y F 2024 Phys. Rev. B 109 L081105 | Flat bands promoted by Hund's rule coupling in the candidate double-layer high-temperature superconductor under high pressure
[19] | Kumar U, Melnick C, and Kotliar G 2023 arXiv: 2310.00983 [cond-mat.str-el] | Softening of $dd$ excitation in the resonant inelastic x-ray scattering spectra as a signature of Hund's coupling in nickelates
[20] | Zhang Y H and Vishwanath A 2020 Phys. Rev. Res. 2 023112 | Type-II model in superconducting nickelate
[21] | Wú W, Luo Z H, Yao D X, and Wang M 2024 Sci. Chin. Phys. Mech. & Astron. 67 117402 | Superexchange and charge transfer in the nickelate superconductor La3Ni2O7 under pressure
[22] | Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108 | Interlayer valence bonds and two-component theory for high- superconductivity of under pressure
[23] | Lu D C, Li M, Zeng Z Y, Hou W, Wang J, Yang F, and You Y Z 2023 arXiv:2308.11195 [cond-mat.str-el] | Superconductivity from Doping Symmetric Mass Generation Insulators: Application to La$_3$Ni$_2$O$_7$ under Pressure
[24] | Schlömer H, Schollwöck U, Grusdt F, and Bohrdt A 2023 arXiv:2311.03349 [cond-mat.str-el] | Superconductivity in the pressurized nickelate La$_3$Ni$_2$O$_7$ in the vicinity of a BEC-BCS crossover
[25] | Chen J L, Yang F, and Li W 2023 arXiv:2311.05491 [cond-mat.str-el] | Orbital-selective Superconductivity in the Pressurized Bilayer Nickelate La$_3$Ni$_2$O$_7$: An Infinite Projected Entangled-Pair State Study
[26] | Qu X Z, Qu D W, Li W, and Su G 2023 arXiv:2311.12769 [cond-mat.str-el] | Roles of Hund's Rule and Hybridization in the Two-orbital Model for High-$T_c$ Superconductivity in the Bilayer Nickelate
[27] | Lu C, Pan Z M, Yang F, and Wu C J 2024 Phys. Rev. Lett. 132 146002 | Interlayer-Coupling-Driven High-Temperature Superconductivity in under Pressure
[28] | Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, and Su G 2024 Phys. Rev. Lett. 132 036502 | Bilayer Model and Magnetically Mediated Pairing in the Pressurized Nickelate
[29] | Zheng Y Y and Wú W 2023 arXiv:2312.03605 [cond-mat.str-el] | Superconductivity in the Bilayer Two-orbital Hubbard Model
[30] | Lu C, Pan Z M, Yang F, and Wu C J 2023 arXiv:2310.02915 [cond-mat.supr-con] | Interplay of two $E_g$ orbitals in Superconducting La$_3$Ni$_2$O$_7$ Under Pressure
[31] | Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002 | -Wave Pairing and the Destructive Role of Apical-Oxygen Deficiencies in under Pressure
[32] | Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505 | Possible -wave superconductivity in
[33] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 Phys. Rev. B 108 165141 | Trends in electronic structures and -wave pairing for the rare-earth series in bilayer nickelate superconductor
[34] | Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2024 Phys. Rev. Lett. 132 106002 | Possible High Superconductivity in under High Pressure through Manifestation of a Nearly Half-Filled Bilayer Hubbard Model
[35] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2024 Nat. Commun. 15 2470 | Structural phase transition, s±-wave pairing, and magnetic stripe order in bilayered superconductor La3Ni2O7 under pressure
[36] | Ryee S, Witt N, and Wehling T O 2023 arXiv:2310.17465 [cond-mat.supr-con] | Quenched pair breaking by interlayer correlations as a key to superconductivity in La$_3$Ni$_2$O$_7$
[37] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2024 Phys. Rev. B 109 045151 | Electronic structure, magnetic correlations, and superconducting pairing in the reduced Ruddlesden-Popper bilayer under pressure: Different role of orbital compared with
[38] | Lange H, Homeier L, Demler E, Schollwöck U, Grusdt F, and Bohrdt A 2024 Phys. Rev. B 109 045127 | Feshbach resonance in a strongly repulsive ladder of mixed dimensionality: A possible scenario for bilayer nickelate superconductors
[39] | Yang H, Oh H, and Zhang Y H 2023 arXiv:2309.15095 [cond-mat.str-el] | Strong pairing from small Fermi surface beyond weak coupling: Application to La$_3$Ni$_2$O$_7$
[40] | Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511 | Type-II model and shared superexchange coupling from Hund's rule in superconducting
[41] | Kakoi M, Kaneko T, Sakakibara H, Ochi M, and Kuroki K 2023 arXiv:2312.04304 [cond-mat.supr-con] | Pair correlations of the hybridized orbitals in a ladder model for the bilayer nickelate La$_3$Ni$_2$O$_7$
[42] | Shen Y, Qin M P, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 | Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-Tc Superconductivity in La3 Ni2 O7 under High Pressure
[43] | Jiang R S, Hou J N, Fan Z Y, Lang Z J, and Ku W 2024 Phys. Rev. Lett. 132 126503 | Pressure Driven Fractionalization of Ionic Spins Results in Cupratelike High- Superconductivity in
[44] | Heier G, Park K, and Savrasov S Y 2024 Phys. Rev. B 109 104508 | Competing and pairing symmetries in superconducting : calculations
[45] | Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, and Xiang T 2023 arXiv:2312.17064 [cond-mat.supr-con] | Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling
[46] | Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510 | Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor under pressure
[47] | LaBollita H, Pardo V, Norman M R, and Botana A S 2023 arXiv:2309.17279 [cond-mat.str-el] | Electronic structure and magnetic properties of La$_{3}$Ni$_{2}$O$_{7}$ under pressure: active role of the Ni-$d_{x^2-y^2}$ orbitals
[48] | Chen X J, Jiang P H, Li J, Zhong Z C, and Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con] | Critical charge and spin instabilities in superconducting La$_3$Ni$_2$O$_7$
[49] | Sui X L, Han X R, Chen X J, Qiao L, Shao X H, and Huang B 2023 arXiv:2312.01271 [cond-mat.mtrl-sci] | Electronic properties of nickelate superconductor R3Ni2O7 with oxygen vacancies
[50] | Geisler B, Fanfarillo L, Hamlin J J, Stewart G R, Hennig R G, and Hirschfeld P J 2024 arXiv:2401.04258 [cond-mat.supr-con] | Optical properties and electronic correlations in La$_3$Ni$_2$O$_7$ bilayer nickelates under high pressure
[51] | Zhang Y, Su D J, Huang Y, Sun H L, Huo M W, Shan Z Y, Ye K X, Yang Z H, Li R, Smidman M, Wang M, Jiao L, and Yuan H Q 2023 arXiv:2307.14819 [cond-mat.supr-con] | High-temperature superconductivity with zero-resistance and strange metal behavior in La$_{3}$Ni$_{2}$O$_{7}$
[52] | Zhou Y Z, Guo J, Cai S, Sun H L, Wang P Y, Zhao J Y, Han J Y, Chen X T, Wu Q, Ding Y, Wang M, Xiang T, Mao H K, and Sun L L 2023 arXiv:2311.12361 [cond-mat.supr-con] | Evidence of filamentary superconductivity in pressurized La3Ni2O7
[53] | Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, and Liu H Z 2023 arXiv:2311.09186 [cond-mat.supr-con] | Structure responsible for the superconducting state in La3Ni2O7 at high pressure and low temperature conditions
[54] | Wang H Z, Chen L, Rutherford A, Zhou H D, and Xie W W 2024 Inorg. Chem. 63 5020 | Long-Range Structural Order in a Hidden Phase of Ruddlesden–Popper Bilayer Nickelate La3 Ni2 O7
[55] | Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con] | Electronic correlations and energy gap in the bilayer nickelate La$_{3}$Ni$_{2}$O$_{7}$
[56] | Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, and Mukuda H 2023 arXiv:2312.11844 [cond-mat.str-el] | Multiband Metallic Ground State in Multilayered Nickelates La$_3$Ni$_2$O$_7$ and La$_4$Ni$_3$O$_{10}$ Probed by $^{139}$La-NMR at Ambient Pressure
[57] | Chen K W, Liu X Q, Jiao J C, Zou M Y, Luo Y X, Wu Q, Zhang N Y, Guo Y F, and Shu L 2023 arXiv:2311.15717 [cond-mat.str-el] | Evidence of spin density waves in La$_3$Ni$_2$O$_{7-δ}$
[58] | Xu M Y, Huyan S Y, Wang H Z, Bud'ko S L, Chen X L, Ke X L, Mitchell J F, Canfield P C, Li J, and Xie W W 2023 arXiv:2312.14251 [cond-mat.supr-con] | Pressure-dependent "Insulator-Metal-Insulator" Behavior in Sr-doped La$_3$Ni$_2$O$_7$
[59] | Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Lu Y, Wang M, Wang Y Y, and Chen Z 2023 arXiv:2312.15727 [cond-mat.supr-con] | Visualization of Oxygen Vacancies and Self-doped Ligand Holes in La3Ni2O7-δ
[60] | Talantsev E F and Chistyakov V V 2024 arXiv:2401.00804 [cond-mat.supr-con] | Debye temperature, electron-phonon coupling constant, and microcrystalline strain in highly-compressed La$_3$Ni$_2$O$_{7-δ}$
[61] | Castellani C, Natoli C R, and Ranninger J 1978 Phys. Rev. B 18 4945 | Magnetic structure of in the insulating phase
[62] | Zhang F C, Gros C, Rice T M, and Shiba H 1988 Supercond. Sci. Technol. 1 36 | A renormalised Hamiltonian approach to a resonant valence bond wavefunction
[63] | Li C H 2009 Gutzwiller Approximation in Strongly Correlated Electron Systems, Ph.D. Dessertation (Boston College) |
[64] | Zhai H, Wang F, and Lee D H 2009 Phys. Rev. B 80 064517 | Antiferromagnetically driven electronic correlations in iron pnictides and cuprates
[65] | Maier T A and Scalapino D J 2011 Phys. Rev. B 84 180513 | Pair structure and the pairing interaction in a bilayer Hubbard model for unconventional superconductivity
[66] | Lin L F, Zhang Y, Alvarez G, Moreo A, and Dagotto E 2021 Phys. Rev. Lett. 127 077204 | Origin of Insulating Ferromagnetism in Iron Oxychalcogenide
[67] | Scalapino D J, White S R, and Zhang S C 1992 Phys. Rev. Lett. 68 2830 | Superfluid density and the Drude weight of the Hubbard model
[68] | Scalapino D J, White S R, and Zhang S C 1993 Phys. Rev. B 47 7995 | Insulator, metal, or superconductor: The criteria
[69] | Hazra T, Verma N, and Randeria M 2019 Phys. Rev. X 9 031049 | Bounds on the Superconducting Transition Temperature: Applications to Twisted Bilayer Graphene and Cold Atoms
[70] | Sigrist M, Rice T M, and Zhang F C 1994 Phys. Rev. B 49 12058 | Superconductivity in a quasi-one-dimensional spin liquid
[71] | Ma T X, Wang D, and Wu C J 2022 Phys. Rev. B 106 054510 | Doping-driven antiferromagnetic insulator-superconductor transition: A quantum Monte Carlo study