[1] | Li W, Xu T, Ma Z, Haruna A Y, Jiang Q H, Luo Y B, and Yang J Y 2021 Chin. Phys. Lett. 38 097201 | Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials
[2] | Chen T, Qin X Y, Ming H W, Zhang X M, Wang Z Y, Yang S H, Zhang Y S, Ge Z H, Xin H X, Li D, and Zhang J 2023 Chem. Eng. J. 467 143397 | Enhancing thermoelectric performance of n-type Bi2Te2.7Se0.3 through the incorporation of MnSb2Se4 nanoinclusions
[3] | Liu Z T, Hong T, Xu L Q, Wang S N, Gao X, Chang C, Ding X D, Xiao Y, and Zhao L D 2023 Interdiscip. Mater. 2 161 | Lattice expansion enables interstitial doping to achieve a high average ZT in n ‐type PbS
[4] | Zhu K, Deng B, Qian X, Wang Y, Li H, Jiang P, Yang R, and Liu W 2022 InfoMat 4 e12324 (in Chinese) | A general White–Box strategy for designing thermoelectric cooling system
[5] | Tang X, Li Z, Liu W, Zhang Q, and Uher C 2022 Interdiscip. Mater. 1 88 | A comprehensive review on Bi2 Te3 ‐based thin films: Thermoelectrics and beyond
[6] | Wang T Y, Duan X L, Zhang H, Ma J L, Zhu H T, Qian X, Yang J Y, Liu T H, and Yang R G 2023 InfoMat 5 e12481 (in Chinese) | Origins of three‐dimensional charge and two‐dimensional phonon transports in Pnma phase PbSnSe2 thermoelectric crystal
[7] | Yang Q, Lyu T, Li Z, Mi H, Dong Y, Zheng H, Sun Z, Feng W, and Xu G 2021 J. Alloys Compd. 852 156989 | Realizing widespread resonance effects to enhance thermoelectric performance of SnTe
[8] | Hussain T, Li X T, Danish M H, Rehman M U, Zhang J, Li D, Chen G, and Tang G D 2020 Nano Energy 73 104832 | Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te
[9] | Tan G, Hao S, Cai S, Bailey T P, Luo Z, Hadar I, Uher C, Dravid V P, Wolverton C, and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 4480 | All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy
[10] | Pei Y, Wang H, and Snyder G J 2012 Adv. Mater. 24 6125 | Band Engineering of Thermoelectric Materials
[11] | Shakouri A, LaBounty C, Abraham P, Piprek J, and Bowers J E 1999 MRS Online Proc. Libr. 545 449 | Enhanced Thermionic Emission Cooling in High Barrier Superlattice Heterostructures
[12] | Li J, Zhang X Y, Lin S Q, Chen Z W, and Pei Y Z 2017 Chem. Mater. 29 605 | Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying
[13] | Fu T Z, Xin J Z, Zhu T J, Shen J J, Fang T, and Zhao X B 2019 Sci. Bull. 64 1024 | Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying
[14] | Liu Z H, Sato N, Gao W H, Yubuta K, Kawamoto N, Mitome M, Kurashima K, Owada Y, Nagase K, Lee C H, Yi J, Tsuchiya K, and Mori T 2021 Joule 5 1196 | Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting
[15] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G 2012 Nature 489 414 | High-performance bulk thermoelectrics with all-scale hierarchical architectures
[16] | Poudel B, Hao Q, Ma Y et al. 2008 Science 320 634 | High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
[17] | Fu L, Yin M, Wu D, Li W, Feng D, Huang L, and He J 2017 Energy & Environ. Sci. 10 2030 | Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects
[18] | Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2014 Nature 508 373 | Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
[19] | Morelli D T, Jovovic V, and Heremans J P 2008 Phys. Rev. Lett. 101 035901 | Intrinsically Minimal Thermal Conductivity in Cubic Semiconductors
[20] | Muchtar A R, Srinivasan B, Tonquesse S L, Singh S, Soelami N, Yuliarto B, Berthebaud D, and Mori T 2021 Adv. Energy Mater. 11 2101122 | Physical Insights on the Lattice Softening Driven Mid‐Temperature Range Thermoelectrics of Ti/Zr‐Inserted SnTe—An Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes’ Equation for Estimating Carrier Properties
[21] | Yang D, Yao W, Yan Y, Qiu W, Guo L, Lu X, Uher C, Han X, Wang G, Yang T, and Zhou X 2017 NPG Asia Mater. 9 e387 | Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3
[22] | Li Y, Sun S, He Y, and Li H 2022 Chin. Phys. Lett. 39 026101 | First-Principles Calculations about Elastic and Li+ Transport Properties of Lithium Superoxides under High Pressure and High Temperature
[23] | Fan C, Liu S, Liu J, Wu B, Tang Q, Tao Y, Pu M, Zhang F, Li J, Wang X, He D, Zhou C, and Lei L 2022 Chin. Phys. Lett. 39 026401 | Evidence for a High-Pressure Isostructural Transition in Nitrogen
[24] | He X, Zhang C L, Li Z W, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y, Wang X C, Feng S M, Song J, Wang L H, Prakapenka V B, Chariton S, Liu H Z, and Jin C Q 2023 Chin. Phys. Lett. 40 057404 | Superconductivity Observed in Tantalum Polyhydride at High Pressure
[25] | Zhang Y, Hao X, Huang Y, Tian F, Li D, Wang Y, Song H, and Duan D 2021 Chin. Phys. Lett. 38 026101 | Structural and Electrical Properties of Bex Zn1–x O Alloys under High Pressure
[26] | Liu C, Wang J, Deng X, Wang X, Pickard C J, Helled R, Wu Z, Wang H T, Xing D, and Sun J 2022 Chin. Phys. Lett. 39 076101 | Partially Diffusive Helium-Silica Compound under High Pressure
[27] | Wang Y, Yao M, Hua X, Jin F, Yao Z, Yang H, Liu Z, Li Q, Liu R, Liu B, Jiang L, and Liu B 2022 Chin. Phys. Lett. 39 056101 | Structural Evolution of D5h (1)-C90 under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube
[28] | Zhu P W, Jia X, Chen H Y, Chen L X, Guo W L, Mei D L, Liu B B, Ma H A, Ren G Z, and Zou G T 2002 Chem. Phys. Lett. 359 89 | Giant improved thermoelectric properties in PbTe by HPHT at room temperature
[29] | Yang M, Sun H, Zhou X, Chen X, Su T, and Liu X 2022 J. Alloys Compd. 910 164827 | Significantly enhanced power factor for superior thermoelectric conversion efficiency in SnTe by doping elemental Indium
[30] | Wu D, Zhao L D, Tong X, Li W, Wu L J, Tan Q, Pei Y L, Huang L, Li J F, Zhu Y M, Kanatzidis M G, and He J Q 2015 Energy & Environ. Sci. 8 2056 | Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration
[31] | Banik A and Biswas K 2014 J. Mater. Chem. A 2 9620 | Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1−xSex system
[32] | Zhang X M, Wang Z Y, Zou B, Brod M K, Zhu J B, Jia T T, Tang G D, Snyder G J, and Zhang Y S 2021 Chem. Mater. 33 9624 | Band Engineering SnTe via Trivalent Substitutions for Enhanced Thermoelectric Performance
[33] | He J, Tan X J, Xu J T, Liu G Q, Shao H Z, Fu Y J, Wang X, Liu Z, Xu J Q, Jiang H C, and Jiang J 2015 J. Mater. Chem. A 3 19974 | Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method
[34] | Ortiz B R, Adamczyk J M, Gordiz K, Braden T, and Toberer E S 2019 Mol. Syst. Des. Eng. 4 407 | Towards the high-throughput synthesis of bulk materials: thermoelectric PbTe–PbSe–SnTe–SnSe alloys
[35] | Rogers L M 1968 J. Phys. D 1 1067 | Drift mobility of light-mass holes in PbTe heavily doped with Na
[36] | Zhao L D, Wu H J, Hao S Q, Wu C I, Zhou X Y, Biswas K, He J Q, Hogan T P, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2013 Energy & Environ. Sci. 6 3346 | All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance
[37] | Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, and Pei Y 2017 Adv. Mater. 29 1605887 | Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects
[38] | Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261 | High thermoelectric performance by resonant dopant indium in nanostructured SnTe
[39] | Tan G J, Zhao L D, Shi F Y, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C, and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006 | High Thermoelectric Performance of p-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach
[40] | Liu Y Q, Zhang X M, Nan P F, Zou B, Zhang Q T, Hou Y X, Li S, Gong Y R, Liu Q F, Ge B H, Cojocaru-Mirédin O, Yu Y, Zhang Y S, Chen G, Wuttig M, and Tang G D 2022 Adv. Funct. Mater. 32 2209980 | Improved Solubility in Metavalently Bonded Solid Leads to Band Alignment, Ultralow Thermal Conductivity, and High Thermoelectric Performance in SnTe
[41] | Zhou D, Li Q, Ma Y, Cui Q, and Chen C 2013 J. Phys. Chem. C 117 5352 | Unraveling Convoluted Structural Transitions in SnTe at High Pressure
[42] | Zhou D, Li Q, Ma Y, Cui Q, and Chen C 2013 J. Phys. Chem. C 117 8437 | Pressure-Driven Enhancement of Topological Insulating State in Tin Telluride
[43] | Guo F, Zhu J, Cui B, Sun Y, Zhang X, Cai W, and Sui J 2022 Acta Mater. 231 117922 | Compromise of thermoelectric and mechanical properties in LiSbTe2 and LiBiTe2 alloyed SnTe
[44] | Aminzare M, Tseng Y C, Ramakrishnan A, Chen K H, and Mozharivskyj Y 2019 Sustainable Energy Fuels 3 251 | Effect of single metal doping on the thermoelectric properties of SnTe
[45] | Tan X, Tan X, Liu G, Xu J, Shao H, Hu H, Jin M, Jiang H, and Jiang J 2017 J. Mater. Chem. C 5 7504 | Optimizing the thermoelectric performance of In–Cd codoped SnTe by introducing Sn vacancies
[46] | Mukherjee S, Cohen R E, and Gülseren O 2003 J. Phys.: Condens. Matter 15 855 | Vacancy formation enthalpy at high pressures in tantalum
[47] | Ouyang G, Zhu W G, Yang G W, and Zhu Z M 2010 J. Phys. Chem. C 114 4929 | Vacancy Formation Energy in Metallic Nanoparticles under High Temperature and High Pressure
[48] | Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, and Ge B 2016 Adv. Electron. Mater. 2 1600019 | Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe
[49] | Ioffe A F, Stil'bans L S, Iordanishvili E K, Stavitskaya T S, Gelbtuch A, and Vineyard G 1959 Phys. Today 12 42 | Semiconductor Thermoelements and Thermoelectric Cooling
[50] | Brebrick R F and Strauss A J 1963 Phys. Rev. 131 104 | Anomalous Thermoelectric Power as Evidence for Two-Valence Bands in SnTe
[51] | Pei Y Z, LaLonde A, Iwanaga S, and Snyder G J 2011 Energy & Environ. Sci. 4 2085 | High thermoelectric figure of merit in heavy hole dominated PbTe
[52] | Tan G J, Shi F Y, Doak J W, Sun H, Zhao L D, Wang P L, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2015 Energy & Environ. Sci. 8 267 | Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe
[53] | Kim H S, Gibbs Z M, Tang Y, Wang H, and Snyder G J 2015 APL Mater. 3 041506 | Characterization of Lorenz number with Seebeck coefficient measurement
[54] | Zhu H, Li Z, Zhao C X, Li X X, Yang J L, Xiao C, and Xie Y 2021 Natl. Sci. Rev. 8 nwaa085 | Efficient interlayer charge release for high-performance layered thermoelectrics
[55] | Tan G J, Shi F Y, Hao S Q, Chi H, Bailey T P, Zhao L D, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507 | Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe
[56] | Tan G, Shi F, Hao S, Chi H, Zhao L D, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 5100 | Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence
[57] | Wu G, Guo Z, Tan X J, Wang R Y, Zhang Q, Hu H Y, Sun P, Wu J H, Liu G Q, and Jiang J 2023 J. Mater. Chem. A 11 649 | Strengthened phonon scattering and band convergence synergistically realize the high-performance SnTe thermoelectric
[58] | Al Rahal Al Orabi R, Mecholsky N A, Hwang J, Kim W, Rhyee J S, Wee D, and Fornari M 2016 Chem. Mater. 28 376 | Band Degeneracy, Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe–CaTe Alloys