[1] | Goedecker S 1999 Rev. Mod. Phys. 71 1085 | Linear scaling electronic structure methods
[2] | Bowler D R and Miyazaki T 2012 Rep. Prog. Phys. 75 036503 | \mathcalO(N) methods in electronic structure calculations
[3] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | Inhomogeneous Electron Gas
[4] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[5] | Li X P, Nunes R W, and Vanderbilt D 1993 Phys. Rev. B 47 10891 | Density-matrix electronic-structure method with linear system-size scaling
[6] | Yang W 1991 Phys. Rev. Lett. 66 1438 | Direct calculation of electron density in density-functional theory
[7] | Nunes R W and Vanderbilt D 1994 Phys. Rev. B 50 17611 | Generalization of the density-matrix method to a nonorthogonal basis
[8] | Niklasson A M N 2002 Phys. Rev. B 66 155115 | Expansion algorithm for the density matrix
[9] | Goedecker S and Teter M 1995 Phys. Rev. B 51 9455 | Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals
[10] | Alben R, Blume M, Krakauer H, and Schwartz L 1975 Phys. Rev. B 12 4090 | Exact results for a three-dimensional alloy with site diagonal disorder: comparison with the coherent potential approximation
[11] | Baer R, Neuhauser D, and Rabani E 2013 Phys. Rev. Lett. 111 106402 | Self-Averaging Stochastic Kohn-Sham Density-Functional Theory
[12] | Zhou W and Yuan S 2023 Chin. Phys. Lett. 40 027101 | A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations
[13] | Fabian M D, Shpiro B, Rabani E, Neuhauser D, and Baer R 2019 WWIREs: Comput. Mol. Sci. 9 e1412 | Stochastic density functional theory
[14] | Hams A and De Raedt H 2000 Phys. Rev. E 62 4365 | Fast algorithm for finding the eigenvalue distribution of very large matrices
[15] | Gambhir A S, Stathopoulos A, and Orginos K 2017 SIAM J. Sci. Comput. 39 A532 | Deflation as a Method of Variance Reduction for Estimating the Trace of a Matrix Inverse
[16] | Tang J M and Saad Y 2012 Numer. Linear Alg. Appl. 19 485 | A probing method for computing the diagonal of a matrix inverse
[17] | Stathopoulos A, Laeuchli J, and Orginos K 2013 SIAM J. Sci. Comput. 35 S299 | Hierarchical Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices
[18] | Wang Z T, Chern G W, Batista C D, and Barros K 2018 J. Chem. Phys. 148 094107 | Gradient-based stochastic estimation of the density matrix
[19] | Moussa J E and Baczewski A D 2019 Electron. Struct. 1 033001 | Assessment of localized and randomized algorithms for electronic structure
[20] | Laeuchli J and Stathopoulos A 2020 SIAM J. Sci. Comput. 42 A1459 | Extending Hierarchical Probing for Computing the Trace of Matrix Inverses
[21] | Neuhauser D, Baer R, and Rabani E 2014 J. Chem. Phys. 141 041102 | Communication: Embedded fragment stochastic density functional theory
[22] | Arnon E, Rabani E, Neuhauser D, and Baer R 2017 J. Chem. Phys. 146 224111 | Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory
[23] | Chen M, Baer R, Neuhauser D, and Rabani E 2019 J. Chem. Phys. 150 034106 | Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
[24] | Chen M, Baer R, Neuhauser D, and Rabani E 2021 J. Chem. Phys. 154 204108 | Stochastic density functional theory: Real- and energy-space fragmentation for noise reduction
[25] | White A J and Collins L A 2020 Phys. Rev. Lett. 125 055002 | Fast and Universal Kohn-Sham Density Functional Theory Algorithm for Warm Dense Matter to Hot Dense Plasma
[26] | Neuhauser D, Gao Y, Arntsen C, Karshenas C, Rabani E, and Baer R 2014 Phys. Rev. Lett. 113 076402 | Breaking the Theoretical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic Approach
[27] | Rabani E, Baer R, and Neuhauser D 2015 Phys. Rev. B 91 235302 | Time-dependent stochastic Bethe-Salpeter approach
[28] | Gao Y, Neuhauser D, Baer R, and Rabani E 2015 J. Chem. Phys. 142 034106 | Sublinear scaling for time-dependent stochastic density functional theory
[29] | Mahan G D 2013 Many-Particle Physics (New York: Springer) |
[30] | Kadanoff L P and Baym G A 1962 Quantum Statistical Mechanics (New York: Benjamin W A, Inc.) |
[31] | Hutchinson M F 1990 Commun. Stat. -Simul. Comput. 19 433 | A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines
[32] | Teng H, Fujiwara T, Hoshi T, Sogabe T, Zhang S L, and Yamamoto S 2011 Phys. Rev. B 83 165103 | Efficient and accurate linear algebraic methods for large-scale electronic structure calculations with nonorthogonal atomic orbitals
[33] | Sogabe T 2022 Krylov Subspace Methods for Linear Systems (Singapore: Springer) |
[34] | Hoshi T, Yamamoto S, Fujiwara T, Sogabe T, and Zhang S L 2012 J. Phys.: Condens. Matter 24 165502 | An order- N electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system
[35] | Supplementary material includes more information about the convergence of Krylov subspace and Chebyshev polynomial expansion for H$_{2}$O- and Si-clusters. |
[36] | Ipsen I C F and Meyer C D 1998 Am. Math. Mon. 105 889 | The Idea Behind Krylov Methods
| Campbell S L, Ipsen I C F, Kelley C T, and Meyer C D 1996 BIT Numer. Math. 36 664 | GMRES and the minimal polynomial
[37] | Porezag D, Frauenheim T, Köhler T, Seifert G, and Kaschner R 1995 Phys. Rev. B 51 12947 | Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon
[38] | Seifert G, Porezag D, and Frauenheim T 1996 Int. J. Quantum Chem. 58 185 | Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme
[39] | Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, and Seifert G 1998 Phys. Rev. B 58 7260 | Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
[40] | Koskinen P and Mäkinen V 2009 Comput. Mater. Sci. 47 237 | Density-functional tight-binding for beginners
[41] | Elstner M and Seifert G 2014 Philos. Trans. R. Soc. A 372 20120483 | Density functional tight binding
[42] | Balay S, Abhyankar S, Mark F et al. 2023 [Online] https://petsc.org/ |
[43] | Balay S, Abhyankar S, Mark F et al. 2023 PETSc/TAO Users Manual. |
[44] | Balay S, Gropp W D, McInnes L C, and Smith B F 1997 Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. In: Modern Software Tools for Scientific Computing, Arge E, Bruaset A M, and Langtangen H P (eds) (Birkhäuser Press) pp 163–202 | Modern Software Tools for Scientific Computing
[45] | Bock N, Cawkwell M J, Coe J D, Krishnapriyan A, Kroonblawd M P, Lang A, Liu C, Saez E M, Mniszewski S M, Negre C F A, Niklasson A M N, Sanville E, Wood M A, and Yang P 2008 “Latte” [Online] https://github.com/lanl/LATTE |
[46] | Krishnapriyan A, Yang P, Niklasson A M N, and Cawkwell M J 2017 J. Chem. Theory Comput. 13 6191 | Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen
[47] | Rauls E, Elsner J, Gutierrez R, and Frauenheim T 1999 Solid State Commun. 111 459 | Stoichiometric and non-stoichiometric (101̄0) and (112̄0) surfaces in 2H–SiC: a theoretical study
[48] | Seifert G, Eschrig H, and Bieger W 1986 Z. Phys. Chem. 267 529 |
[49] | Humphrey W, Dalke A, and Schulten K 1996 J. Mol. Graphics 14 33 | VMD: Visual molecular dynamics
[50] | Niklasson A M N 2004 Phys. Rev. B 70 193102 | Iterative refinement method for the approximate factorization of a matrix inverse
[51] | Negre C F A, Mniszewski S M, Cawkwell M J, Bock N, Wall M E, and Niklasson A M N 2016 J. Chem. Theory Comput. 12 3063 | Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations