[1] | Maddox J 2002 Nature 417 903 | Maxwell's demon: Slamming the door
[2] | Landauer R 1961 IBM J. Res. Dev. 5 183 | Irreversibility and Heat Generation in the Computing Process
[3] | Vinjanampathy S and Anders J 2016 Contemp. Phys. 57 545 | Quantum thermodynamics
[4] | Plenio M B and Vitelli V 2001 Contemp. Phys. 42 25 | The physics of forgetting: Landauer's erasure principle and information theory
[5] | Maruyama K, Nori F, and Vedral V 2009 Rev. Mod. Phys. 81 1 | Colloquium : The physics of Maxwell’s demon and information
[6] | Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865 | Quantum entanglement
[7] | Brunner N, Cavalcanti D, Pironio S, Scarani V, and Wehner S 2014 Rev. Mod. Phys. 86 419 | Bell nonlocality
[8] | Uola R, Costa A C S, Nguyen H C, and Gühne O 2020 Rev. Mod. Phys. 92 015001 | Quantum steering
[9] | del Rio L, Åberg J, Renner R, Dahlsten O, and Vedral V 2011 Nature 474 61 | The thermodynamic meaning of negative entropy
[10] | Oppenheim J, Horodecki M, Horodecki P, and Horodecki R 2002 Phys. Rev. Lett. 89 180402 | Thermodynamical Approach to Quantifying Quantum Correlations
[11] | Zurek W H 2003 Phys. Rev. A 67 012320 | Quantum discord and Maxwell’s demons
[12] | Maruyama K, Morikoshi F, and Vedral V 2005 Phys. Rev. A 71 012108 | Thermodynamical detection of entanglement by Maxwell’s demons
[13] | Groisman B, Popescu S, and Winter A 2005 Phys. Rev. A 72 032317 | Quantum, classical, and total amount of correlations in a quantum state
[14] | Funo K, Watanabe Y, and Ueda M 2013 Phys. Rev. A 88 052319 | Thermodynamic work gain from entanglement
[15] | Perarnau-Llobet M, Hovhannisyan K V, Huber M, Skrzypczyk P, Brunner N, and Acín A 2015 Phys. Rev. X 5 041011 | Extractable Work from Correlations
[16] | Ciampini M A, Mancino L, Orieux A, Vigliar C, Mataloni P, Paternostro M, and Barbieri M 2017 npj Quantum Inf. 3 10 | Experimental extractable work-based multipartite separability criteria
[17] | Lloyd S 1997 Phys. Rev. A 56 3374 | Quantum-mechanical Maxwell’s demon
[18] | Kieu T D 2004 Phys. Rev. Lett. 93 140403 | The Second Law, Maxwell's Demon, and Work Derivable from Quantum Heat Engines
[19] | Beyer K, Luoma K, and Strunz W T 2019 Phys. Rev. Lett. 123 250606 | Steering Heat Engines: A Truly Quantum Maxwell Demon
[20] | Elouard C, Herrera-Martí D, Huard B, and Auffèves A 2017 Phys. Rev. Lett. 118 260603 | Extracting Work from Quantum Measurement in Maxwell’s Demon Engines
[21] | Ji W T, Chai Z H, Wang M Q, Guo Y H, Rong X, Shi F Z, Ren C L, Wang Y, and Du J F 2022 Phys. Rev. Lett. 128 090602 | Spin Quantum Heat Engine Quantified by Quantum Steering
[22] | Wiseman H M, Jones S J, and Doherty A C 2007 Phys. Rev. Lett. 98 140402 | Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox
[23] | Saunders D J, Jones S J, Wiseman H M, and Pryde G J 2010 Nat. Phys. 6 845 | Experimental EPR-steering using Bell-local states
[24] | Moldover M R, Tew W L, and Yoon H W 2016 Nat. Phys. 12 7 | Advances in thermometry
[25] | Ren J G, Xu P, Yong H L et al. 2017 Nature 549 70 | Ground-to-satellite quantum teleportation
[26] | Arute F, Arya K, Babbush R et al. 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[27] | Wu Y L, Bao W S, Cao S R et al. 2021 Phys. Rev. Lett. 127 180501 | Strong Quantum Computational Advantage Using a Superconducting Quantum Processor
[28] | Zhu Q L, Cao S R, Chen F S et al. 2022 Sci. Bull. 67 240 | Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
[29] | Song C, Xu K, Li H K et al. 2019 Science 365 574 | Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits
[30] | Preskill J 2018 Quantum 2 79 | Quantum Computing in the NISQ era and beyond
[31] | Nielson M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press) |
[32] | Wang Z T, Wang R X, Zhao P, Yang Z H, Huang K X, Xu K, Zhang Y S, Fan H, Zhao S P, Hu M J, and Yu H F 2023 arXiv:2311.10955 [quant-ph] | Demonstration of Maxwell Demon-assistant Einstein-Podolsky-Rosen Steering via Superconducting Quantum Processor