[1] | Bednorz J G and Müller K A 1986 Z. Phys. B-Condens. Matter 64 189 | Possible highT c superconductivity in the Ba?La?Cu?O system
[2] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[3] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 | From quantum matter to high-temperature superconductivity in copper oxides
[4] | Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, and Lichtenberg F 1994 Nature 372 532 | Superconductivity in a layered perovskite without copper
[5] | Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296 | Iron-Based Layered Superconductor La[O1- x F x ]FeAs ( x = 0.05−0.12) with Tc = 26 K
[6] | Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, and Hosono H 2008 Nature 453 376 | Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs
[7] | Paglione J and Greene R L 2010 Nat. Phys. 6 645 | High-temperature superconductivity in iron-based materials
[8] | Hu J P, Le C, and Wu X 2015 Phys. Rev. X 5 041012 | Predicting Unconventional High-Temperature Superconductors in Trigonal Bipyramidal Coordinations
[9] | Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901 | Electronic structure of possible nickelate analogs to the cuprates
[10] | Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109 | Infinite-layer : is not
[11] | Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404 | Orbital Order and Possible Superconductivity in Superlattices
[12] | Crespin M, Levitz P, and Gatineau L 1983 J. Chem. Soc. Faraday Trans. 2 79 1181 | Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2 Ni2 O5 and LaNiO2
[13] | Greenblatt M 1997 Curr. Opin. Solid State Mater. Sci. 2 174 | Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties
[14] | Hayward M A, Green M A, Rosseinsky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843 | Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO2
[15] | Crespin M, Isnard O, Dubois F, Choisnet J, and Odier P 2005 J. Solid State Chem. 178 1326 | LaNiO2: Synthesis and structural characterization
[16] | Kawai M, Matsumoto K, Ichikawa N, Mizumaki M, Sakata O, Kawamura N, Kimura S, and Shimakawa Y 2010 Cryst. Growth & Des. 10 2044 | Orientation Change of an Infinite-Layer Structure LaNiO2 Epitaxial Thin Film by Annealing with CaH2
[17] | Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 | Superconductivity in an infinite-layer nickelate
[18] | Osada M, Wang B Y, Lee K, Li D, and Hwang H Y 2020 Phys. Rev. Mater. 4 121801 | Phase diagram of infinite layer praseodymium nickelate thin films
[19] | Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 | Superconducting Dome in Infinite Layer Films
[20] | Norman M R 2020 Physics 13 85 | Entering the Nickel Age of Superconductivity
[21] | Sun H L, Huo M W, Hu X W, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493 | Signatures of superconductivity near 80 K in a nickelate under high pressure
[22] | Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 arXiv:2307.09865 [cond-mat.supr-con] | Emergence of high-temperature superconducting phase in the pressurized La3Ni2O7 crystals
[23] | Zhang Y, Su D, Huang Y, Sun H, Huo M, Shan Z, Ye K, Yang Z, Li R, Smidman M, Wang M, Jiao L, and Yuan H 2023 arXiv:2307.14819 [cond-mat.supr-con] | High-temperature superconductivity with zero-resistance and strange metal behavior in La$_{3}$Ni$_{2}$O$_{7}$
[24] | Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con] | Electronic correlations and energy gap in the bilayer nickelate La$_{3}$Ni$_{2}$O$_{7}$
[25] | Luo Z, Hu X, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001 | Bilayer Two-Orbital Model of under Pressure
[26] | Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510 | Electronic structure, dimer physics, orbital-selective behavior, and magnetic tendencies in the bilayer nickelate superconductor under pressure
[27] | Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505 | Possible -wave superconductivity in
[28] | Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2023 arXiv:2306.06039 [cond-mat.supr-con] | Possible high $T_c$ superconductivity in La$_3$Ni$_2$O$_7$ under high pressure through manifestation of a nearly-half-filled bilayer Hubbard model
[29] | Gu Y, Le C, Yang Z, Wu X, and Hu J 2023 arXiv:2306.07275 [cond-mat.supr-con] | Effective model and pairing tendency in bilayer Ni-based superconductor La$_3$Ni$_2$O$_7$
[30] | Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 | Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-Tc Superconductivity in La3 Ni2 O7 under High Pressure
[31] | Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501 | Correlated Electronic Structure of under Pressure
[32] | Shilenko D A and Leonov I V 2023 Phys. Rev. B 108 125105 | Correlated electronic structure, orbital-selective behavior, and magnetic correlations in double-layer under pressure
[33] | Wú W, Luo Z, Yao D X, and Wang M 2023 arXiv:2307.05662 [cond-mat.str-el] | Charge Transfer and Zhang-Rice Singlet Bands in the Nickelate Superconductor $\mathrm{La_3Ni_2O_7}$ under Pressure
[34] | Cao Y and Yang Y F 2023 arXiv:2307.06806 [cond-mat.supr-con] | Flat bands promoted by Hund's rule coupling in the candidate double-layer high-temperature superconductor La$_3$Ni$_2$O$_7$
[35] | Chen X, Jiang P, Li J, Zhong Z, and Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con] | Critical charge and spin instabilities in superconducting La$_3$Ni$_2$O$_7$
[36] | Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002 | -Wave Pairing and the Destructive Role of Apical-Oxygen Deficiencies in under Pressure
[37] | Lu C, Pan Z, Yang F, and Wu C 2023 arXiv:2307.14965 [cond-mat.supr-con] | Interlayer Coupling Driven High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$ Under Pressure
[38] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 arXiv:2307.15276 [cond-mat.supr-con] | Structural phase transition, $s_{\pm}$-wave pairing and magnetic stripe order in the bilayered nickelate superconductor La$_3$Ni$_2$O$_7$ under pressure
[39] | Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511 | Type-II model and shared superexchange coupling from Hund's rule in superconducting
[40] | Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, and Si Q 2023 arXiv:2307.16697 [cond-mat.supr-con] | Electron correlations and superconductivity in La$_3$Ni$_2$O$_7$ under pressure tuning
[41] | Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, and Su G 2023 arXiv:2307.16873 [cond-mat.str-el] | Bilayer $t$-$J$-$J_\perp$ Model and Magnetically Mediated Pairing in the Pressurized Nickelate La$_3$Ni$_2$O$_7$
[42] | Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108 | Interlayer valence bonds and two-component theory for high- superconductivity of under pressure
[43] | Fujimori A and Minami F 1984 Phys. Rev. B 30 957 | Valence-band photoemission and optical absorption in nickel compounds
[44] | van Elp J, Eskes H, Kuiper P, and Sawatzky G A 1992 Phys. Rev. B 45 1612 | Electronic structure of Li-doped NiO
[45] | Kuiper P, Kruizinga G, Ghijsen J, Sawatzky G A, and Verweij H 1989 Phys. Rev. Lett. 62 221 | Character of Holes in and Their Magnetic Behavior
[46] | Taguchi M, Matsunami M, Ishida Y, Eguchi R, Chainani A, Takata Y, Yabashi M, Tamasaku K, Nishino Y, Ishikawa T, Senba Y, Ohashi H, and Shin S 2008 Phys. Rev. Lett. 100 206401 | Revisiting the Valence-Band and Core-Level Photoemission Spectra of NiO
[47] | Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 | Effective Hamiltonian for the superconducting Cu oxides
[48] | Coleman P 1984 Phys. Rev. B 29 3035 | New approach to the mixed-valence problem
[49] | Anderson P W, Lee P A, Randeria M, Rice T M, Trivedi N, and Zhang F C 2004 J. Phys.: Condens. Matter 16 R755 | The physics behind high-temperature superconducting cuprates: the plain vanilla version of RVB
[50] | Jiang K, Wu X, Hu J, and Wang Z 2018 Phys. Rev. Lett. 121 227002 | Nodeless High- Superconductivity in the Highly Overdoped Monolayer
[51] | Jiang K, Le C, Li Y, Qin S, Wang Z, Zhang F, and Hu J 2021 Phys. Rev. B 103 045108 | Electronic structure and two-band superconductivity in unconventional high- cuprates
[52] | Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2023 arXiv:2309.01148 [cond-mat.supr-con] | Orbital-Dependent Electron Correlation in Double-Layer Nickelate La3Ni2O7