[1] | Bednorz J G and Müller K A 1986 Z. Phys. B-Condens. Matter 64 189 | Possible highT c superconductivity in the Ba?La?Cu?O system
[2] | Sawa H, Suzuki S, Watanabe M, Akimitsu J, Matsubara H, Watabe H, Uchida S, Kokusho K, Asano H, Izumi F, and Takayama-Muromachi E 1989 Nature 337 347 | Unusually simple crystal structure of an Nd–Ce–Sr–Cu–O superconductor
[3] | Smith M G, Manthiram A, Zhou J, Goodenough J B, and Markert J T 1991 Nature 351 549 | Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1–yNdyCu02
[4] | Yvon K and Frangois M 1989 Z. Phys. B-Condens. Matter 76 413 | Crystal structures of high-T c oxides
[5] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 | From quantum matter to high-temperature superconductivity in copper oxides
[6] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[7] | Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901 | Electronic structure of possible nickelate analogs to the cuprates
[8] | Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404 | Orbital Order and Possible Superconductivity in Superlattices
[9] | Li D f, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 | Superconductivity in an infinite-layer nickelate
[10] | Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, and Wen H H 2020 Nat. Commun. 11 6027 | Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films
[11] | Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F, and Hwang H Y 2020 Nano Lett. 20 5735 | A Superconducting Praseodymium Nickelate with Infinite Layer Structure
[12] | Zeng S W, Li J C, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, and Ariando A 2022 Sci. Adv. 8 eabl9927 | Superconductivity in infinite-layer nickelate La1−x Cax NiO2 thin films
[13] | Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083 | Nickelate Superconductivity without Rare‐Earth Magnetism: (La,Sr)NiO2
[14] | Pan G A, Ferenc S D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Cordova C D, N`Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160 | Superconductivity in a quintuple-layer square-planar nickelate
[15] | Wei W Z, Vu D, Zhang Z, Walker F J, and Ahn C H 2023 Sci. Adv. 9 eadh3327 | Superconducting Nd 1− x Eu x NiO2 thin films using in situ synthesis
[16] | Ding X, Tam C C, Sui X, Zhao Y, Xu M, Choi J, Leng H, Zhang J, Wu M, Xiao H, Zu X, Garcia-Fernandez M, Agrestini S, Wu X, Wang Q, Gao P, Li S, Huang B, Zhou K J, and Qiao L 2023 Nature 615 50 | Critical role of hydrogen for superconductivity in nickelates
[17] | Gu Q Q and Wen H H 2022 Innovation 3 100202 | Superconductivity in nickel-based 112 systems
[18] | Gao Q, Zhao Y, Zhou X J, and Zhu Z 2021 Chin. Phys. Lett. 38 077401 | Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd0.8 Sr0.2 NiO2
[19] | Xiang Y, Li Q, Li Y, Yang H, Nie Y, and Wen H H 2021 Chin. Phys. Lett. 38 047401 | Physical Properties Revealed by Transport Measurements for Superconducting Nd0.8 Sr0.2 NiO2 Thin Films
[20] | Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, and Cheng J G 2022 Nat. Commun. 13 4367 | Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films
[21] | Li Q, He C, Si J, Zhu X, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16 | Absence of superconductivity in bulk Nd1−xSrxNiO2
[22] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409 | Synthesis and characterization of bulk and
[23] | Cui Y, Li C, Li Q, Zhu X, Hu Z, Yang Y F, Zhang J, Yu R, Wen H H, and Yu W 2021 Chin. Phys. Lett. 38 067401 | NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd0.85 Sr0.15 NiO2
[24] | Beznosikov B V and Aleksandrov K S 2000 Crystallogr. Rep. 45 792 | Perovskite-like crystals of the Ruddlesden-Popper series
[25] | Lacorre P 1992 J. Solid State Chem. 97 495 | Passage from T-type to T′-type arrangement by reducing R4Ni3O10 to R4Ni3O8 (R = La, Pr, Nd)
[26] | Catalano S, Gibert M, Fowlie J, Íñiguez J, Triscone J M, and Kreisel J 2018 Rep. Prog. Phys. 81 046501 | Rare-earth nickelates R NiO3 : thin films and heterostructures
[27] | Zhang J J and Tao X T 2021 CrystEngComm 23 3249 | Review on quasi-2D square planar nickelates
[28] | Wu G Q, Neumeier J J, and Hundley M F 2001 Phys. Rev. B 63 245120 | Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of and
[29] | Zhang J J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, and Mitchell J F 2020 Phys. Rev. Mater. 4 083402 | High oxygen pressure floating zone growth and crystal structure of the metallic nickelates ( )
[30] | Huangfu S X, Jakub G D, Zhang X, Blacque O, Puphal P, Pomjakushina E, von Rohr F O, and Schilling A 2020 Phys. Rev. B 101 104104 | Anisotropic character of the metal-to-metal transition in
[31] | Li B Z, Wang C, Yang P T, Sun J P, Liu Y B, Wu J, Ren Z, Cheng J G, Zhang G M, and Cao G H 2020 Phys. Rev. B 101 195142 | Metal-to-metal transition and heavy-electron state in
[32] | Li Q, He C, Zhu X, Si J, Fan X, and Wen H H 2021 Sci. Chin. Phys. Mech. & Astron. 64 227411 | Contrasting physical properties of the trilayer nickelates Nd4Ni3O10 and Nd4Ni3O8
[33] | Huo M W, Liu Z J, Sun H L, Li L S, Lui H, Huang C X, Liang F X, Shen B, and Wang M 2022 Chin. Phys. B 31 107401 | Synthesis and properties of La1 – x Srx NiO3 and La1–x Srx NiO2
[34] | He C P, Ming X, Li Q, Zhu X Y, Si J, and Wen H H 2021 J. Phys.: Condens. Matter 33 265701 | Synthesis and physical properties of perovskite Sm1−x Srx NiO3 (x = 0, 0.2) and infinite-layer Sm0.8 Sr0.2 NiO2 nickelates
[35] | Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L, Liu H, Yu J, Zhang Z, Chen Z, Liang F, Dong H, Guo H, Zhong D, Shen B, Li S, and Wang M 2022 Sci. Chin. Phys. Mech. & Astron. 66 217411 | Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6
[36] | Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, and Nie Y F 2020 APL Mater. 8 091112 | Epitaxial growth and electronic structure of Ruddlesden–Popper nickelates (La n +1Ni n O3 n +1, n = 1–5)
[37] | Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, and Dessau D S 2017 Nat. Commun. 8 704 | Fermiology and electron dynamics of trilayer nickelate La4Ni3O10
[38] | Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493 | Signatures of superconductivity near 80 K in a nickelate under high pressure
[39] | Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302 | Emergence of High-Temperature Superconducting Phase in Pressurized La3 Ni2 O7 Crystals
[40] | Zhang Y, Su D, Huang Y, Sun H, Huo M, Shan Z, Ye K, Yang Z, Li R, Smidman M, Wang M, Jiao L, and Yuan H 2023 arXiv:2307.14819 [cond-mat.supr-con] | High-temperature superconductivity with zero-resistance and strange metal behavior in La$_{3}$Ni$_{2}$O$_{7}$
[41] | Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2023 arXiv:2309.01651 [cond-mat.supr-con] | Effects of Pressure and Doping on Ruddlesden-Popper phases Lan+1NinO3n+1
[42] | Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2023 arXiv:2309.09462 [cond-mat.supr-con] | Theoretical analysis on the possibility of superconductivity in a trilayer Ruddlesden-Popper nickelate La$_4$Ni$_3$O$_{10}$ under pressure and its experimental examination: comparison with La$_3$Ni$_2$O$_7$
[43] | Wang G, Wang N, Hou J, Ma L, Shi L, Ren Z, Gu Y, Shen X, Ma H, Yang P, Liu Z, Guo H, Sun J, Zhang G, Yan J, Wang B, Uwatoko Y, and Cheng J 2023 arXiv:2309.17378 [cond-mat.supr-con] | Pressure-induced superconductivity in polycrystalline La3Ni2O7
[44] | Liu Z, Huo M, Li J, Li Q, Liu Y, Dai Y, Zhou X, Hao J, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con] | Electronic correlations and energy gap in the bilayer nickelate La$_{3}$Ni$_{2}$O$_{7}$
[45] | Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2023 arXiv:2309.01148 [cond-mat.supr-con] | Orbital-Dependent Electron Correlation in Double-Layer Nickelate La3Ni2O7
[46] | Luo Z H, Hu X W, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001 | Bilayer Two-Orbital Model of under Pressure
[47] | Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505 | Possible -wave superconductivity in
[48] | Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2023 arXiv:2306.06039 [cond-mat.supr-con] | Possible high $T_c$ superconductivity in La$_3$Ni$_2$O$_7$ under high pressure through manifestation of a nearly-half-filled bilayer Hubbard model
[49] | Gu Y, Le C, Yang Z, Wu X, and Hu J 2023 arXiv:2306.07275 [cond-mat.supr-con] |
[50] | Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108 | Interlayer valence bonds and two-component theory for high- superconductivity of under pressure
[51] | Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121 | Electronic correlations and superconducting instability in under high pressure
[52] | Chen X, Jiang P, Li J, Zhong Z, and Lu Y Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con] | Critical charge and spin instabilities in superconducting La$_3$Ni$_2$O$_7$
[53] | Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 | Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-Tc Superconductivity in La3 Ni2 O7 under High Pressure
[54] | Geisler B, Hamlin J J, Stewart G R, Hennig R G, and Hirschfeld P J 2023 arXiv:2309.15078 [cond-mat.supr-con] | Structural transitions, octahedral rotations, and electronic properties of $A_3$Ni$_2$O$_7$ rare-earth nickelates under high pressure
[55] | Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002 | -Wave Pairing and the Destructive Role of Apical-Oxygen Deficiencies in under Pressure
[56] | Kumar S, Fjellvåg Ø, Sjåstad A O, and Fjellvåg H 2020 J. Magn. Magn. Mater. 496 165915 | Physical properties of Ruddlesden-Popper (n = 3) nickelate: La4Ni3O10
[57] | Huangfu S, Zhang X, and Schilling A 2020 Phys. Rev. Res. 2 033247 | Correlation between the tolerance factor and phase transition in ( and )
[58] | Segedin D F, Goodge B H, Pan G A et al. 2023 Nat. Commun. 14 1468 | Limits to the strain engineering of layered square-planar nickelate thin films
[59] | Zhang Z and Greenblatt M 1995 J. Solid State Chem. 117 236 | Synthesis, Structure, and Properties of Ln4Ni3O10-δ (Ln = La, Pr, and Nd)
[60] | Yuan N, Elghandour A, Arneth J, Dey K, and Klingeler R 1995 J. Cryst. Growth 627 127511 | High-pressure crystal growth and investigation of the metal-to-metal transition of Ruddlesden–Popper trilayer nickelates La4Ni3O10
[61] | Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, and Mitchell J F 2020 Nat. Commun. 11 6003 | Intertwined density waves in a metallic nickelate
[62] | Scalapino D J 2012 Rev. Mod. Phys. 84 1383 | A common thread: The pairing interaction for unconventional superconductors
[63] | Wen H H 2008 Adv. Mater. 20 3764 | Developments and Perspectives of Iron‐based High‐Temperature Superconductors
[64] | Carvalho M D, Costa F M A, Pereira I D S, Wattiaux A, Bassat J M, Grenier J C, and Pouchard M 1997 J. Mater. Chem. 7 2107 | New preparation method of Lan+1NinO3n+1−δ (n=2, 3)
[65] | Cheary R W and Coelho A 1992 J. Appl. Crystallogr. 25 109 | A fundamental parameters approach to X-ray line-profile fitting
[66] | Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673 | Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
[67] | Ling C D, Argyriou D N, Wu G Q, and Neumeier J J 2000 J. Solid State Chem. 152 517 | Neutron Diffraction Study of La3Ni2O7: Structural Relationships Among n=1, 2, and 3 Phases Lan+1NinO3n+1
[68] | Carvalho M D, Cruz M M, Wattiaux A, Bassat J M, Costa F M A, and Godinho M 2000 J. Appl. Phys. 88 544 | Influence of oxygen stoichiometry on the electronic properties of La4Ni3O10±δ
[69] | Bassat J M, Allançon C, Odier P, Loup J P, Carvalho M D, and Wattiaux A 1998 Eur. J. Solid State Inorg. Chem. 35 173 | Electronic properties of Pr4Ni3O10±δ
[70] | Li Q, Si J, Duan T, Zhu X, and Wen H H 2020 Philos. Mag. 100 2402 | Synthesis, structure, and physical properties of bilayer molybdate Sr3 Mo2 O7 with flat-band
[71] | Retoux R, Rodriguez-Carvajal J, and Lacorre P 1998 J. Solid State Chem. 140 307 | Neutron Diffraction and TEM Studies of the Crystal Structure and Defects of Nd4Ni3O8
[72] | Zhu Y, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Guo J, and Zhao J 2023 arXiv:2311.07353 [cond-mat.supr-con] | Superconductivity in trilayer nickelate La$_4$Ni$_3$O$_{10}$ single crystals
[73] | Zhang M, Pei C, Du X, Cao Y, Wang Q, Wu J, Li Y, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhao J, Chen Y, Guo H, Yang L, and Qi Y 2023 arXiv:2311.07423 [cond-mat.supr-con] | Superconductivity in trilayer nickelate La4Ni3O10 under pressure