[1] | Anderson P W 1958 Phys. Rev. 109 1492 | Absence of Diffusion in Certain Random Lattices
[2] | Abrahams E, Anderson P W, Licciardello D C, and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673 | Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions
[3] | Fleishman L and Licciardello D C 1977 J. Phys. C 10 L125 | Fluctuations and localization in one dimension
[4] | Mott N 1987 J. Phys. C 20 3075 | The mobility edge since 1967
[5] | Lagendijk A, van Tiggelen B, and Wiersma D S 2009 Phys. Today 62 24 | Fifty years of Anderson localization
[6] | Brandes T and Kettemann S 2003 The Anderson Transition and Its Ramifications—Localisation, Quantum Interference, and Interactions (Berlin: Springer) pp 3–19 |
[7] | Soukoulis C M and Economou E N 1982 Phys. Rev. Lett. 48 1043 | Localization in One-Dimensional Lattices in the Presence of Incommensurate Potentials
[8] | Sokoloff J B 1985 Phys. Rep. 126 189 | Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials
[9] | Hiramoto H and Kohmoto M 1989 Phys. Rev. B 40 8225 | Scaling analysis of quasiperiodic systems: Generalized Harper model
[10] | Avila A, You J, and Zhou Q 2017 Duke Math. J. 166 2697 | Sharp phase transitions for the almost Mathieu operator
[11] | Aubry S and André G 1980 Ann. Israel Phys. Soc. 3 133 |
[12] | Gonçalves M, Amorim B, Castro E V, and Ribeiro P 2022 arXiv:2206.13549v2 [cond-mat.dis-nn] | Renormalization-Group Theory of 1D quasiperiodic lattice models with commensurate approximants
[13] | Lin X, Chen X, Guo G, and Gong M 2022 arXiv:2209.03060v1 [quant-ph] | General approach to tunable critical phases with two coupled chains
[14] | Zhou X, Wang Y, Poon T J, Zhou Q, and Liu X 2022 arXiv:2212.14285v2 [cond-mat.dis-nn] | Exact new mobility edges between critical and localized states
[15] | Liu T, Xia X, Longhi S, and Sanchez-Palencia L 2022 SciPost Phys. 12 027 | Anomalous mobility edges in one-dimensional quasiperiodic models
[16] | Liu Y X, Wang Y C, Liu X J, Zhou Q, and Chen S 2021 Phys. Rev. B 103 014203 | Exact mobility edges, -symmetry breaking, and skin effect in one-dimensional non-Hermitian quasicrystals
[17] | Liu Y X, Wang Y C, Zheng Z H, and Chen S 2021 Phys. Rev. B 103 134208 | Exact non-Hermitian mobility edges in one-dimensional quasicrystal lattice with exponentially decaying hopping and its dual lattice
[18] | Cai X M 2021 Phys. Rev. B 103 214202 | Localization and topological phase transitions in non-Hermitian Aubry-André-Harper models with -wave pairing
[19] | Cai X M 2022 Phys. Rev. B 106 214207 | Localization transitions and winding numbers for non-Hermitian Aubry-André-Harper models with off-diagonal modulations
[20] | Avila A 2015 Acta Math. 215 1 | Global theory of one-frequency Schrödinger operators
[21] | See the Supplemental Material for details of (i) derivation of Lyapunov exponent in position space, (iii) more numerical verification |
[22] | Sarnak P 1982 Commun. Math. Phys. 84 377 | Spectral behavior of quasi periodic potentials
[23] | Amin K, Nagarajan R, Pandit R, and Bid A 2022 Phys. Rev. Lett. 129 186802 | Multifractal Conductance Fluctuations in High-Mobility Graphene in the Integer Quantum Hall Regime
[24] | Deng X, Ray S, Sinha S, Shlyapnikov G V, and Santos L 2019 Phys. Rev. Lett. 123 025301 | One-Dimensional Quasicrystals with Power-Law Hopping
[25] | Yao H P, Khoudli A, Bresque L, and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405 | Critical Behavior and Fractality in Shallow One-Dimensional Quasiperiodic Potentials
[26] | Wardak A and Gong P 2022 Phys. Rev. Lett. 129 048103 | Extended Anderson Criticality in Heavy-Tailed Neural Networks
[27] | Liu F L, Ghosh S, and Chong Y D 2015 Phys. Rev. B 91 014108 | Localization and adiabatic pumping in a generalized Aubry-André-Harper model
[28] | Liu T, Guo H, Pu Y, and Longhi S 2020 Phys. Rev. B 102 024205 | Generalized Aubry-André self-duality and mobility edges in non-Hermitian quasiperiodic lattices
[29] | Bai X and Xue J 2015 Chin. Phys. Lett. 32 010302 | Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials
[30] | Yin Y, Niu Y, Ding M, Liu H, and Liang Z 2016 Chin. Phys. Lett. 33 057202 | Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials