[1] | Chen J, Xu X F, Zhou J, and Li B W 2022 Rev. Mod. Phys. 94 025002 | Interfacial thermal resistance: Past, present, and future
[2] | Teng Y Q, Zhao H L, Zhang Z J, Li Z L, Xia Q, Zhang Y, Zhao L N, Du X F, Du Z H, Lv P P, and Świerczek K 2016 ACS Nano 10 8526 | MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes
[3] | Tang Z K, Zhang Y N, Zhang D Y, Lau W M, and Liu L M 2014 Sci. Rep. 4 7007 | The stability and electronic properties of novel three-dimensional graphene-MoS2 hybrid structure
[4] | Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J 2010 Nat. Nanotechnol. 5 722 | Boron nitride substrates for high-quality graphene electronics
[5] | Yu Z H, Zhang L F, Wu J, and Zhao Y S 2023 Acta Phys. Sin. 72 057301 (in Chinese) | Recent progress of 2-dimensional layered thermoelectric materials
[6] | Singh J and Kumar R 2023 Diamond Relat. Mater. 136 110001 | Effect of the interface on mechanical and fracture properties of lateral graphene/hexagonal boron-nitride heterostructure: A molecular dynamics study
[7] | Gholivand H and Donmezer N 2017 IEEE Trans. Nanotechnol. 16 752 | Phonon Mean Free Path in Few Layer Graphene, Hexagonal Boron Nitride, and Composite Bilayer h-BN/Graphene
[8] | Alborzi M S and Rajabpour A 2021 Eur. Phys. J. Plus 136 959 | Thermal transport in van der Waals graphene/boron-nitride structure: a molecular dynamics study
[9] | Chen C C, Li Z, Shi L, and Cronin S B 2015 Nano Res. 8 666 | Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures
[10] | Chen C C, Li Z, Shi L, and Cronin S B 2014 Appl. Phys. Lett. 104 081908 | Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction
[11] | Zhang J C, Hong Y, and Yue Y N 2015 J. Appl. Phys. 117 134307 | Thermal transport across graphene and single layer hexagonal boron nitride
[12] | Ren W J, Ouyang Y L, Jiang P F, Yu C Q, He J, and Chen J 2021 Nano Lett. 21 2634 | The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure
[13] | Zou J H and Cao B Y 2017 Appl. Phys. Lett. 110 103106 | Phonon thermal properties of graphene on h -BN from molecular dynamics simulations
[14] | Chen X K, Pang M, Chen T, Du D, and Chen K Q 2020 ACS Appl. Mater. & Interfaces 12 15517 | Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures
[15] | Zhou J S, Li H P, Tang H K, Shao L, Han K, and Shen X P 2022 ACS Omega 7 5844 | Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions
[16] | Run K P, Shi X T, Zhang Y L, Guo Y Q, Zhong X, and Gu J W 2023 Angew. Chem. Int. Ed. 62 e202309010 | Electric‐Field‐Induced Alignment of Functionalized Carbon Nanotubes Inside Thermally Conductive Liquid Crystalline Polyimide Composite Films
[17] | Zhang Y H, Heo Y J, Son Y R, In I, An K H, Kim B J, and Park S J 2019 Carbon 142 445 | Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials
[18] | Zang X N, Zhou Q, Chang J Y, Liu Y M, and Lin L W 2015 Microelectron. Eng. 132 192 | Graphene and carbon nanotube (CNT) in MEMS/NEMS applications
[19] | Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, and Ruch D 2016 Prog. Polym. Sci. 61 1 | Review of thermal conductivity in composites: Mechanisms, parameters and theory
[20] | Peng L Q, Yu H T, Chen C, He Q X, Zhang H, Zhao F, Qin M M, Feng Y, and Feng W 2023 Adv. Sci. 10 2205962 | Tailoring Dense, Orientation–Tunable, and Interleavedly Structured Carbon‐Based Heat Dissipation Plates
[21] | Zhang D, Tang Y Z, Wang S, Lin H, and He Y 2022 Compos. Interface 29 899 | A study on the thermal resistance over metal–carbon nanotube interface by molecular dynamics simulation
[22] | Yu H T, Feng Y Y, Chen C, Zhang Z X, Cai Y, Qin M M, and Feng W 2021 Carbon 179 348 | Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material
[23] | Lindsay L and Broido D A 2011 Phys. Rev. B 84 155421 | Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride
[24] | Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441 | Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
[25] | Zou J H, Ye Z Q, and Cao B Y 2016 J. Chem. Phys. 145 134705 | Phonon thermal properties of graphene from molecular dynamics using different potentials
[26] | Si C, Wang X D, Fan Z, Feng Z H, and Cao B Y 2017 Int. J. Heat Mass Transfer 107 450 | Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations
[27] | Zhang C X, Lou J, and Song J Z 2014 J. Appl. Phys. 115 144308 | A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure
[28] | Thamwattana N and Hill J M 2007 J. Phys.: Condens. Matter 19 406209 | Continuum modelling for carbon and boron nitride nanostructures
[29] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[30] | Liu B, Baimova J A, Reddy C D, Law A W K, Dmitriev S V, Wu H, and Zhou K 2014 ACS Appl. Mater. & Interfaces 6 18180 | Interfacial Thermal Conductance of a Silicene/Graphene Bilayer Heterostructure and the Effect of Hydrogenation
[31] | Hong Y, Zhang J, and Zeng X C 2016 Nanoscale 8 19211 | Interlayer thermal conductance within a phosphorene and graphene bilayer
[32] | Ouyang W G, Qin H S, Urbakh M, and Hod O 2020 Nano Lett. 20 7513 | Controllable Thermal Conductivity in Twisted Homogeneous Interfaces of Graphene and Hexagonal Boron Nitride
[33] | Fan L and Yao W J 2021 Diamond Relat. Mater. 118 108521 | Reduction of interfacial thermal transport of bilayer in-plane graphene/hexagonal boron nitride heterostructures via interlayer sp3 bonds, defects and stacking angle
[34] | Yang H, Zhang Z T, Zang J C, and Zeng X C 2018 Nanoscale 10 19092 | Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride
[35] | Ye Z Q, Cao B Y, and Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese) | Study on thermal characteristics of phonons in graphene
[36] | Eshkalak K E, Sadeghzadeh S, and Molaei F 2020 J. Phys. Chem. C 124 14316 | Interfacial Thermal Resistance Mechanism for the Polyaniline (C3 N)–Graphene Heterostructure
[37] | Liu W X, Wu Y Q, Hong Y, Hou B, Zhang J C, and Yue Y N 2021 Phys. Chem. Chem. Phys. 23 19166 | Full-spectrum thermal analysis in twisted bilayer graphene
[38] | Hou Q W, Cao B Y, and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) | Thermal conductivity of carbon nanotube: From ballistic to diffusive transport
[39] | Grujicic M, Cao G, and Gersten B 2004 Mater. Sci. Eng. B 107 204 | Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes
[40] | Lin J Y and Huang M J 2023 Nanoscale Microscale Thermophys. Eng. 27 149 | An Investigation into the Roughness and Film Thickness Effects on the Interfacial Thermal Resistance
[41] | Zhang G and Li B W 2005 J. Chem. Phys. 123 114714 | Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature