[1] | Li D Y, Wu Y Y, Kim P, Shi L, Yang P D, and Majumdar A 2003 Appl. Phys. Lett. 83 2934 | Thermal conductivity of individual silicon nanowires
[2] | Feser J P et al. 2012 J. Appl. Phys. 112 114306 | Thermal conductivity of silicon nanowire arrays with controlled roughness
[3] | Lim J, Hippalgaonkar K, Andrews S C, Majumdar A, and Yang P 2012 Nano Lett. 12 2475 | Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires
[4] | Pochhammer L 1876 Z. Angew. Math. Phys. 81 324 | Journal für die reine und angewandte Mathematik Band 81
[5] | Holden A N 1951 Bell Syst. Tech. J. 30 956 | Longitudinal Modes of Elastic Waves in Isotropic Cylinders and Slabs
[6] | Pao Y H and Mindlin R D 1960 J. Appl. Mech. 27 513 | Dispersion of Flexural Waves in an Elastic, Circular Cylinder
[7] | Khitun A, Balandin A, and Wang K L 1999 Superlattices Microstruct. 26 181 | Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons
[8] | Bifano M F P, Kaul P B, and Prakash V 2010 Nanotechnology 21 235704 | Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter
[9] | Chantrenne P, Barrat J L, Blase X, and Gale J D 2005 J. Appl. Phys. 97 104318 | An analytical model for the thermal conductivity of silicon nanostructures
[10] | MacDonald D K C 1950 Proc. R. Soc. A|Proc. R. Soc. London Ser. A 203 223 | Size effect variation of the electrical conductivity of metals
[11] | Bera C 2012 J. Appl. Phys. 112 074323 | Monte Carlo simulation of thermal conductivity of Si nanowire: An investigation on the phonon confinement effect on the thermal transport
[12] | Kukita K and Kamakura Y 2013 J. Appl. Phys. 114 154312 | Monte Carlo simulation of phonon transport in silicon including a realistic dispersion relation
[13] | Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056 | Molecular dynamics simulation of thermal conductivity of silicon nanowires
[14] | Yang N, Zhang G, and Li B 2008 Nano Lett. 8 276 | Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires
[15] | Yang N, Zhang G, and Li B 2010 Nano Today 5 85 | Violation of Fourier's law and anomalous heat diffusion in silicon nanowires
[16] | Zhu G, Zhao C, Wang X, and Wang J 2021 Chin. Phys. Lett. 38 024401 | Tuning Thermal Conductivity in Si Nanowires with Patterned Structures
[17] | Wang W Z, Ai Q, Yong S, and Tan H P 2023 Int. J. Heat Mass Transfer 206 123959 | Topology optimization of bilayer thermal scattering cloak based on CMA-ES
[18] | He Z, Yuan K, Xiong G, and Wang J 2023 Chin. Phys. Lett. 40 104402 | Inverse Design and Experimental Verification of Metamaterials for Thermal Illusion Using Genetic Algorithms
[19] | Wang J and Wang J S 2007 Appl. Phys. Lett. 90 241908 | Dimensional crossover of thermal conductance in nanowires
[20] | Achenbach J 2012 Wave propagation in Elastic Solids (Amsterdam: Elsevier) p 236 |
[21] | Bifano M F P and Prakash V 2012 J. Appl. Phys. 111 034319 | Thermal properties of nanotubes and nanowires with acoustically stiffened surfaces
[22] | Zou J and Balandin A 2001 J. Appl. Phys. 89 2932 | Phonon heat conduction in a semiconductor nanowire
[23] | Au Y T C et al. 2006 Phys. Rev. B 74 155317 | Impact of surface bond-order loss on phonon dispersion relations and thermal conductivity of cylindrical Si nanowires
[24] | Tong T, Prasher R and Majumdar A 2007 Micro and Nanosystems, Parts A and B (Seattle, WA: ASME) p 631 |
[25] | Pascual-Gutiérrez J A, Murthy J Y, and Viskanta R 2007 J. Appl. Phys. 102 034315 | Limits of size confinement in silicon thin films and wires
[26] | Giannozzi P et al. 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[27] | Prasher R, Tong T, and Majumdar A 2008 Nano Lett. 8 99 | Approximate Analytical Models for Phonon Specific Heat and Ballistic Thermal Conductance of Nanowires
[28] | Kittel C 2005 Introduction to Solid State Physics 8th edn (Hoboken: Wiley) p 107 |
[29] | Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) p 189 |
[30] | Soffer S B 1967 J. Appl. Phys. 38 1710 | Statistical Model for the Size Effect in Electrical Conduction
[31] | Callaway J 1959 Phys. Rev. 113 1046 | Model for Lattice Thermal Conductivity at Low Temperatures
[32] | Barinov A A, Liu B, Khvesyuk V I, and Zhang K 2020 Phys. At. Nucl. 83 1538 | Updated Model for Thermal Conductivity Calculation of Thin Films of Silicon and Germanium
[33] | Khvesyuk V I and Skryabin A S 2017 High Temp. 55 434 | Heat conduction in nanostructures
[34] | Dugdale J S and Basinski Z S 1967 Phys. Rev. 157 552 | Mathiessen's Rule and Anisotropic Relaxation Times
[35] | Holland M G 1963 Phys. Rev. 132 2461 | Analysis of Lattice Thermal Conductivity
[36] | Ward A and Broido D A 2010 Phys. Rev. B 81 085205 | Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge
[37] | Morelli D T, Heremans J P, and Slack G A 2002 Phys. Rev. B 66 195304 | Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
[38] | Herring C 1954 Phys. Rev. 95 954 | Role of Low-Energy Phonons in Thermal Conduction
[39] | Asen-Palmer M et al. 1997 Phys. Rev. B 56 9431 | Thermal conductivity of germanium crystals with different isotopic compositions
[40] | Klemens P G 1955 Proc. Phys. Soc. Sect. A 68 1113 | The Scattering of Low-Frequency Lattice Waves by Static Imperfections