[1] | Chen A L, Wang Y S, Wang Y F, Zhou H T, and Yuan S M 2022 Appl. Mech. Rev. 74 020801 | Design of Acoustic/Elastic Phase Gradient Metasurfaces: Principles, Functional Elements, Tunability, and Coding
[2] | Chen J, He J, Pan D, Wang X T, Yang N, Zhu J J, Yang S A, and Zhang G 2022 Sci. Chin. Phys. Mech. & Astron. 65 117002 | Emerging theory and phenomena in thermal conduction: A selective review
[3] | Zhang Z W, Guo Y Y, Marc B, Chen J, Nomura M, and Volz S 2021 APL Mater. 9 081102 | Coherent thermal transport in nano-phononic crystals: An overview
[4] | Gao F, Xie J L, Peng Y C, Yan B, Liu E, Peng P, Li H, Jiang J P, and Liu J J 2020 Europhys. Lett. 132 38003 | Subwavelength acoustic focusing within multi-breadth bands with a window-shape metasurface
[5] | Song X P, Chen T N, and Li R 2021 J. Appl. Phys. 130 085101 | Frequency band-selected one-way topological edge mode via acoustic metamaterials and metasurface
[6] | Cen Y, Xie J L, and Liu J J 2019 Chin. Opt. Lett. 17 080501 | Multi-band imaging and focusing of photonic crystal flat lens with scatterer-size gradient
[7] | Feng Z F, Zhang X D, Wang Y Q, Li Z Y, Cheng B Y, and Zhang D Z 2005 Phys. Rev. Lett. 94 247402 | Negative Refraction and Imaging Using 12-fold-Symmetry Quasicrystals
[8] | Chen J H, Qian J, Guan Y J, Ge Y, Yuan S Q, Sun H X, Lai Y, and Liu X J 2021 Front. Mater. 8 766491 | Broadband Bidirectional and Multi-Channel Unidirectional Acoustic Insulation by Mode-Conversion Phased Units
[9] | Ge Y, Sun H X, Yuan S Q, and Xia J P 2017 Appl. Phys. A 123 328 | Asymmetric acoustic transmission in an open channel based on multiple scattering mechanism
[10] | Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A, and Jing Y 2017 Phys. Rev. Lett. 119 035501 | Tunable Asymmetric Transmission via Lossy Acoustic Metasurfaces
[11] | Song A L, Chen T N, Wang X P, and Xi Y H 2017 Phys. Lett. A 381 2283 | Broadband asymmetric acoustic transmission through an acoustic prism
[12] | Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, and Cheng J C 2016 Appl. Phys. Lett. 108 073501 | Acoustic focusing by symmetrical self-bending beams with phase modulations
[13] | Yamamoto N and Nomura H 2021 Jpn. J. Appl. Phys. 60 SDDB05 | Self-bending airborne ultrasound beam using a binary lens based on the Airy function
[14] | Zhang P, Li T C, Zhu J, Zhu X F, Yang S, Wang Y, Yin X B, and Zhang X 2014 Nat. Commun. 5 4316 | Generation of acoustic self-bending and bottle beams by phase engineering
[15] | Bückmann T, Thiel M, Kadic M, Schittny R, and Wegener M 2014 Nat. Commun. 5 4130 | An elasto-mechanical unfeelability cloak made of pentamode metamaterials
[16] | Cummer S A, Christensen J, and Alù A 2016 Nat. Rev. Mater. 1 16001 | Controlling sound with acoustic metamaterials
[17] | Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302 | Experimental Demonstration of a Bilayer Thermal Cloak
[18] | Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, and Li Y 2019 J. Acoust. Soc. Am. 145 254 | Acoustic perfect absorbers via Helmholtz resonators with embedded apertures
[19] | Fleury R, Sounas D, and Alu A 2015 Nat. Commun. 6 5905 | An invisible acoustic sensor based on parity-time symmetry
[20] | Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, and Sheng P 2012 Nat. Commun. 3 756 | Dark acoustic metamaterials as super absorbers for low-frequency sound
[21] | Maldovan M 2013 Nature 503 209 | Sound and heat revolutions in phononics
[22] | Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, and Li B W 2018 J. Phys. Chem. Lett. 9 3959 | Randomness-Induced Phonon Localization in Graphene Heat Conduction
[23] | Yang L N, Chen J, Yang N, and Li B W 2015 Int. J. Heat Mass Transfer 91 428 | Significant reduction of graphene thermal conductivity by phononic crystal structure
[24] | Ma J Q, Wang S E, Wan X, Ma D K, Xiao Y, Hao Q, and Yang N 2022 Nanoscale 14 17072 | The unrevealed 3D morphological evolution of annealed nanoporous thin films
[25] | Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J, and Chen J 2021 APL Mater. 9 040703 | Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures
[26] | Lei M, Jiang C R, Yang F B, Wang J, and Huang J P 2023 Int. J. Heat Mass Transfer 207 124033 | Programmable all-thermal encoding with metamaterials
[27] | Zhang Z R, Yang F B, and Huang J P 2023 Phys. Rev. Appl. 19 024009 | Intelligent Chameleonlike Metashells for Mass Diffusion
[28] | Zhang C, Ma D K, Shang M Y, Wan X, Lü J T, Guo Z L, Li B W, and Yang N 2022 Mater. Today Phys. 22 100605 | Graded thermal conductivity in 2D and 3D homogeneous hotspot systems
[29] | Xu L J, Liu J R, Jin P, Xu G Q, Li J X, Ouyang X P, Li Y, Qiu C W, and Huang J P 2023 Natl. Sci. Rev. 10 nwac159 | Black-hole-inspired thermal trapping with graded heat-conduction metadevices
[30] | Ji R C, Peng G L, Xu Z W, Yang N, and Hao Q 2022 Acta Phys. Sin. 71 168401 (in Chinese) |
[31] | Jin P, Liu J R, Xu L J, Wang J, Ouyang X P, Jiang J H, and Huang J P 2023 Proc. Natl. Acad. Sci. USA 120 e2217068120 | Tunable liquid–solid hybrid thermal metamaterials with a topology transition
[32] | Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, and Volz S 2021 Phys. Rev. B 103 184307 | Generalized decay law for particlelike and wavelike thermal phonons
[33] | Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, and Volz S 2022 Phys. Rev. Lett. 128 015901 | Heat Conduction Theory Including Phonon Coherence
[34] | Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, and Volz S 2022 npj Comput. Mater. 8 96 | How coherence is governing diffuson heat transfer in amorphous solids
[35] | Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, and Yang N 2023 Acta Phys. Sin. 72 034401 (in Chinese) |
[36] | Lu S, Ouyang Y L, Yu C Q, Jiang P F, He J, and Chen J 2021 J. Appl. Phys. 129 225106 | Tunable phononic thermal transport in two-dimensional C6CaC6 via guest atom intercalation
[37] | Jiang P F, Hu S Q, Ouyang Y L, Ren W J, Yu C Q, Zhang Z W, and Chen J 2020 J. Appl. Phys. 127 235101 | Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact
[38] | Pan D K, Zong Z C, and Yang N 2022 Acta Phys. Sin. 71 086302 (in Chinese) | Phonon weak couplings in nanoscale thermophysics
[39] | Chen J, Zhang G, and Li B W 2011 J. Chem. Phys. 135 104508 | Phonon coherent resonance and its effect on thermal transport in core-shell nanowires
[40] | An M, Chen D S, Ma W G, Hu S Q, and Zhang X 2021 Int. J. Heat Mass Transfer 178 121630 | Directly visualizing the crossover from incoherent to coherent phonons in two-dimensional periodic MoS2/MoSe2 arrayed heterostructure
[41] | Liu B, Guo Y Y, Khvesyuk V I, Barinov A A, and Wang M R 2022 Nano Res. 15 9492 | Heat conduction of multilayer nanostructures with consideration of coherent and incoherent phonon transport
[42] | Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, and Chen J 2019 Nanoscale 11 11839 | Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures
[43] | Haku S, Moriya H, An H Y, Musha A, and Ando K 2021 Phys. Rev. B 104 174403 | Coherent-incoherent crossover of the intrinsic spin Hall effect in Pd
[44] | Chen J F, Xie J L, and Liu J J 2021 Results Phys. 30 104840 | Continuous-phase-transformation acoustic metasurface
[45] | Gao S L, Zeng Q L, Gong M Y, Lan J, and Liu X 2022 Micromachines 14 12 | An Acoustic Flat Lens for Broadband Focusing via Cross-Shape Structure
[46] | Ulug B, Kuruoğlu F, Yalçın Y, Erol A, Sarcan F, Şahin A, and Cicek A 2022 J. Phys. D 55 225303 | Surface acoustic wave quasi-Bessel beams generated by symmetrically tilted interdigital transducers
[47] | Cheng P S, Shulumba N, and Minnich A J 2019 Phys. Rev. B 100 094306 | Thermal transport and phonon focusing in complex molecular crystals: Ab initio study of polythiophene
[48] | Hurley D C, Wolfe J P, and McCarthy K A 1986 Phys. Rev. B 33 4189 | Phonon focusing in tellurium dioxide
[49] | Camley R E and Maradudin A A 1983 Phys. Rev. B 27 1959 | Phonon focusing at surfaces
[50] | Taylor B, Maris H J, and Elbaum C 1969 Phys. Rev. Lett. 23 416 | Phonon Focusing in Solids
[51] | Every A G 1992 Phys. Rev. B 45 5270 | Phonon focusing in reflection and transmission
[52] | Tamura S 1983 Phys. Rev. B 28 897 | Large-wave-vector phonons in highly dispersive crystals: Phonon-focusing effects
[53] | Yang J K, Shen M, Yang Y, Evans W J, Wei Z Y, Chen W Y, Zinn A A, Chen Y F, Prasher R, Xu T T, Keblinski P, and Li D Y 2014 Phys. Rev. Lett. 112 205901 | Phonon Transport through Point Contacts between Graphitic Nanomaterials
[54] | Schelling P K, Phillpot S R, and Keblinski P 2002 Appl. Phys. Lett. 80 2484 | Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation
[55] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[56] | Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441 | Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
[57] | Zhang Z W, Ouyang Y L, Chen J, and Volz S 2020 Chin. Phys. B 29 124402 | A phononic rectifier based on carbon schwarzite host–guest system*