[1] | Li J Y, Gao Y, and Huang J P 2010 J. Appl. Phys. 108 074504 | A bifunctional cloak using transformation media
[2] | Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302 | Experimental Demonstration of a Bilayer Thermal Cloak
[3] | Guo J, Xu G, Tian D, Qu Z, and Qiu C W 2022 Adv. Mater. 34 e2201093 | A Real‐Time Self‐Adaptive Thermal Metasurface
[4] | Li Y, Qi M, Li J, Cao P C, Wang D, Zhu X F, Qiu C W, and Chen H 2022 Nat. Commun. 13 2683 | Heat transfer control using a thermal analogue of coherent perfect absorption
[5] | Veselago V G 1968 Sov. Phys. Usp. 10 509 | THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ
[6] | Shelby R A, Smith D R, and Schultz S 2001 Science 292 77 | Experimental Verification of a Negative Index of Refraction
[7] | Landy N I, Sajuyigbe S, Mock J J, Smith D R, and Padilla W J 2008 Phys. Rev. Lett. 100 207402 | Perfect Metamaterial Absorber
[8] | Alitalo P and Tretyakov S 2009 Mater. Today 12 22 | Electromagnetic cloaking with metamaterials
[9] | Pendry J B, Schurig D, and Smith D R 2006 Science 312 1780 | Controlling Electromagnetic Fields
[10] | Leonhardt U 2006 Science 312 1777 | Optical Conformal Mapping
[11] | Sabah C, Dincer F, Karaaslan M, Akgol O, Demirel E, and Unal E 2014 IEEE Trans. Antennas Propag. 62 5745 | New-Generation Chiral Metamaterials Based on Rectangular Split Ring Resonators With Small and Constant Chirality Over a Certain Frequency Band
[12] | Huang L, Fan Y H, Wu S, and Yu L Z 2015 Chin. Phys. Lett. 32 094101 | Giant Asymmetric Transmission and Optical Rotation of a Three-Dimensional Metamaterial
[13] | Wen D E, Huang X, Guo L, Yang H, Han S, and Zhang J 2015 Optik 126 1018 | Quadruple-band polarization-insensitive wide-angle metamaterial absorber based on multi-layer structure
[14] | Song G Y, Huang B, Dong H Y, Cheng Q, and Cui T J 2016 Sci. Rep. 6 35929 | Broadband Focusing Acoustic Lens Based on Fractal Metamaterials
[15] | Yang M and Sheng P 2017 Annu. Rev. Mater. Res. 47 83 | Sound Absorption Structures: From Porous Media to Acoustic Metamaterials
[16] | Elwi T A and Ahmad B A 2018 AEU-Int. J. Electron. Commun. 96 122 | A fractal metamaterial based printed dipoles on a nickel oxide polymer palm fiber substrate for Wi-Fi applications
[17] | Huang L L, Zhang S, and Zentgraf T 2018 Nanophotonics 7 1169 | Metasurface holography: from fundamentals to applications
[18] | Zhang C, Yin S, Long C, Dong B W, He D, and Cheng Q 2021 Opt. Express 29 14078 | Hybrid metamaterial absorber for ultra-low and dual-broadband absorption
[19] | Zhang F, Jia Z R, Zhou J X, Liu J K, Wu G F, and Yin P 2022 Chem. Eng. J. 450 138205 | Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption
[20] | Huang X M, Liu Y, Tian Y, Zhang W, Duan Y, Ming T Z, and Xu G L 2020 J. Phys. D 53 115502 | A thermal cloak with thermoelectric devices to manipulate a temperature field within a wide range of conductivity ratios
[21] | Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907 | Shaped graded materials with an apparent negative thermal conductivity
[22] | Li Y and Li J 2021 Chin. Phys. Lett. 38 030501 | Advection and Thermal Diode
[23] | Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050 | Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction
[24] | Liu Y D, Cheng Y H, Hu R, and Luo X B 2019 Phys. Lett. A 383 2296 | Nanoscale thermal cloaking by in-situ annealing silicon membrane
[25] | Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303 | Heat Flux Manipulation with Engineered Thermal Materials
[26] | Guenneau S and Amra C 2013 Opt. Express 21 6578 | Anisotropic conductivity rotates heat fluxes in transient regimes
[27] | Hu R, Huang S Y, Wang M, Zhou L L, Peng X Y, and Luo X B 2018 Phys. Rev. Appl. 10 054032 | Binary Thermal Encoding by Energy Shielding and Harvesting Units
[28] | Zhou S L, Hu R, and Luo X B 2018 Int. J. Heat Mass Transfer 127 607 | Thermal illusion with twinborn-like heat signatures
[29] | Hu R, Huang S Y, Wang M, Luo X B, Shiomi J, and Qiu C W 2019 Adv. Mater. 31 e1807849 | Encrypted Thermal Printing with Regionalization Transformation
[30] | Hu R, Zhou S L, Li Y, Lei D Y, Luo X, and Qiu C W 2018 Adv. Mater. 30 e1707237 | Illusion Thermotics
[31] | Ji Q X, Chen X Y, Laude V, Liang J, Fang G D, Wang C G, Alaee R, and Kadic M 2023 Chin. J. Aeronaut. 36 212 | Selective thermal emission and infrared camouflage based on layered media
[32] | Zhang J W, Huang S Y, and Hu R 2021 Chin. Phys. Lett. 38 010502 | Adaptive Radiative Thermal Camouflage via Synchronous Heat Conduction
[33] | Hu R and Luo X B 2019 Natl. Sci. Rev. 6 1071 | Two-dimensional phonon engineering triggers microscale thermal functionalities
[34] | Ju R, Xu G, Xu L, Qi M, Wang D, Cao P C, Xi R, Shou Y, Chen H, Qiu C W, and Li Y 2023 Adv. Mater. 35 2209123 | Convective Thermal Metamaterials: Exploring High‐Efficiency, Directional, and Wave‐Like Heat Transfer
[35] | Li Y Y, Zhang H C, Chen Y J, and Zhang J 2023 Energy Rep. 9 3716 | Transformed thermal meta-devices for manipulating macroscopic thermal fields
[36] | Schittny R, Kadic M, Guenneau S, and Wegener M 2013 Phys. Rev. Lett. 110 195901 | Experiments on Transformation Thermodynamics: Molding the Flow of Heat
[37] | Dai G L, Shang J, and Huang J P 2018 Phys. Rev. E 97 022129 | Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage
[38] | Xu L J, Dai G L, and Huang J P 2020 Phys. Rev. Appl. 13 024063 | Transformation Multithermotics: Controlling Radiation and Conduction Simultaneously
[39] | Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488 | Transforming heat transfer with thermal metamaterials and devices
[40] | Sha W, Xiao M, Huang M Z, and Gao L 2022 Mater. Today Phys. 28 100880 | Topology-optimized freeform thermal metamaterials for omnidirectionally cloaking sensors
[41] | Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218 | Diffusion metamaterials
[42] | Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y, and Huang J 2015 Phys. Rev. Lett. 115 195503 | Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes
[43] | Shen X Y, Li Y, Jiang C R, and Huang J P 2016 Phys. Rev. Lett. 117 055501 | Temperature Trapping: Energy-Free Maintenance of Constant Temperatures as Ambient Temperature Gradients Change
[44] | Shen X Y, Li Y, Jiang C R, Ni Y S, and Huang J P 2016 Appl. Phys. Lett. 109 031907 | Thermal cloak-concentrator
[45] | Lee S, Hippalgaonka K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, and Wu J 2017 Science 355 371 | Anomalously low electronic thermal conductivity in metallic vanadium dioxide
[46] | Zhang X K, Li J Y, Lin J C, Tong P, Wang M, Wang X L, Tong H Y, Zhang Y S, Song W H, and Sun Y P 2021 Acta Mater. 208 116709 | High-contrast, reversible change of thermal conductivity in hexagonal nickel-iron sulfides
[47] | Chen H Y, Yue Z M, Ren D D, Zeng H R, Wei T R, Zhao K P, Yang R G, Qiu P F, Chen L D, and Shi X 2019 Adv. Mater. 31 e1806518 | Thermal Conductivity during Phase Transitions