[1] | Chang D E, Douglas J S, González-Tudela A, Hung C L, and Kimble H J 2018 Rev. Mod. Phys. 90 031002 | Colloquium : Quantum matter built from nanoscopic lattices of atoms and photons
[2] | Luan X S, Béguin J B, Burgers A P, Qin Z, Yu S P, and Kimble H J 2020 Adv. Quantum Technol. 3 2000008 | The Integration of Photonic Crystal Waveguides with Atom Arrays in Optical Tweezers
[3] | Béguin J B, Burgers A P, Luan X, Qin Z, Yu S P, and Kimble H J 2020 Optica 7 1 | Advanced apparatus for the integration of nanophotonics and cold atoms
[4] | Wang W Y, Xu Y T, and Chai Z 2022 Adv. Photon. Res. 3 2200153 | On‐Chip Light–Atom Interactions: Physics and Applications
[5] | Bouscal A, Kemiche M, Mahapatra S, Fayard N, Berroir J, Ray T, Greffet J J, Raineri F, Levenson A, Bencheikh K, Sauvan C, Urvoy A, and Laurat J 2023 arXiv:2301.04675 [quant-ph] | Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms
[6] | Lvovsky A I, Sanders B C, and Tittel W 2009 Nat. Photon. 3 706 | Optical quantum memory
[7] | Gouraud B, Maxein D, Nicolas A, Morin O, and Laurat J 2015 Phys. Rev. Lett. 114 180503 | Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber
[8] | Pichler H, Choi S, Zoller P, and Lukin M D 2017 Proc. Natl. Acad. Sci. USA 114 11362 | Universal photonic quantum computation via time-delayed feedback
[9] | Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577 | Quantum optical circulator controlled by a single chirally coupled atom
[10] | Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, and Zoller P 2017 Nature 541 473 | Chiral quantum optics
[11] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[12] | Tiecke T, Thompson J D, de Leon N P, Liu L, Vuletić V, and Lukin M D 2014 Nature 508 241 | Nanophotonic quantum phase switch with a single atom
[13] | Muralidharan S, Zou C L, Li L, Wen J, and Jiang L 2017 New J. Phys. 19 013026 | Overcoming erasure errors with multilevel systems
[14] | Stehle C, Zimmermann C, and Slama S 2014 Nat. Phys. 10 937 | Cooperative coupling of ultracold atoms and surface plasmons
[15] | Stehle C, Bender H, Zimmermann C, Kern D, Fleischer M, and Slama S 2011 Nat. Photon. 5 494 | Plasmonically tailored micropotentials for ultracold atoms
[16] | Douglas J S, Habibian H, Hung C L, Gorshkov A V, Kimble H J, and Chang D E 2015 Nat. Photon. 9 326 | Quantum many-body models with cold atoms coupled to photonic crystals
[17] | González-Tudela A, Hung C L, Chang D E, Cirac J I, and Kimble H J 2015 Nat. Photon. 9 320 | Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals
[18] | Zektzer R, Mazurski N, Barash Y, and Levy U 2021 Nat. Photon. 15 772 | Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing
[19] | Sebbag Y, Naiman A, Talker E, Barash Y, and Levy U 2021 ACS Photon. 8 142 | Chip-Scale Integration of Nanophotonic-Atomic Magnetic Sensors
[20] | Lin Y J, Teper I, Chin C, and Vuletić V 2004 Phys. Rev. Lett. 92 050404 | Impact of the Casimir-Polder Potential and Johnson Noise on Bose-Einstein Condensate Stability Near Surfaces
[21] | Fortágh J, Ott H, Kraft S, Günther A, and Zimmermann C 2002 Phys. Rev. A 66 041604 | Surface effects in magnetic microtraps
[22] | Burgers A P, Peng L S, Muniz J A, McClung A C, Martin M J, and Kimble H J 2019 Proc. Natl. Acad. Sci. USA 116 456 | Clocked atom delivery to a photonic crystal waveguide
[23] | Thompson J D, Tiecke T, de Leon N P, Feist J, Akimov A, Gullans M, Zibrov A S, Vuletić V, and Lukin M D 2013 Science 340 1202 | Coupling a Single Trapped Atom to a Nanoscale Optical Cavity
[24] | Samutpraphoot P, Đorđević T, Ocola P L, Bernien H, Senko C, Vuletić V, and Lukin M D 2020 Phys. Rev. Lett. 124 063602 | Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity
[25] | Đorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, and Lukin M D 2021 Science 373 1511 | Entanglement transport and a nanophotonic interface for atoms in optical tweezers
[26] | Kim M E, Chang T H, Fields B M, Chen C A, and Hung C L 2019 Nat. Commun. 10 1647 | Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices
[27] | Zhou X C, Tamura H, Chang T H, and Hung C L 2023 Phys. Rev. Lett. 130 103601 | Coupling Single Atoms to a Nanophotonic Whispering-Gallery-Mode Resonator via Optical Guiding
[28] | Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, and Kimble H 2006 Nature 443 671 | Observation of strong coupling between one atom and a monolithic microresonator
[29] | Will E, Masters L, Rauschenbeutel A, Scheucher M, and Volz J 2021 Phys. Rev. Lett. 126 233602 | Coupling a Single Trapped Atom to a Whispering-Gallery-Mode Microresonator
[30] | Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S, and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603 | Optical Interface Created by Laser-Cooled Atoms Trapped in the Evanescent Field Surrounding an Optical Nanofiber
[31] | Goban A, Choi K, Alton D, Ding D, Lacroûte C, Pototschnig M, Thiele T, Stern N, and Kimble H 2012 Phys. Rev. Lett. 109 033603 | Demonstration of a State-Insensitive, Compensated Nanofiber Trap
[32] | Corzo N V, Raskop J, Chandra A, Sheremet A S, Gouraud B, and Laurat J 2019 Nature 566 359 | Waveguide-coupled single collective excitation of atomic arrays
[33] | Reitz D, Sayrin C, Mitsch R, Schneeweiss P, and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 243603 | Coherence Properties of Nanofiber-Trapped Cesium Atoms
[34] | Hümmer D, Schneeweiss P, Rauschenbeutel A, and Romero-Isart O 2019 Phys. Rev. X 9 041034 | Heating in Nanophotonic Traps for Cold Atoms
[35] | Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science 345 903 | All-optical routing of single photons by a one-atom switch controlled by a single photon
[36] | Barnett A H, Smith S P, Olshanii M, Johnson K S, Adams A W, and Prentiss M 2000 Phys. Rev. A 61 023608 | Substrate-based atom waveguide using guided two-color evanescent light fields
[37] | Chang T H, Fields B M, Kim M E, and Hung C L 2019 Optica 6 1203 | Microring resonators on a suspended membrane circuit for atom–light interactions
[38] | Liu A P, Xu L, Xu X B, Chen G J, Zhang P F, Xiang G Y, Guo G C, Wang Q, and Zou C L 2022 Phys. Rev. A 106 033104 | Proposal for low-power atom trapping on a GaN-on-sapphire chip
[39] | Liu A P, Liu J W, Peng W, Xu X B, Chen G J, Ren X, Wang Q, and Zou C L 2022 Phys. Rev. A 105 053520 | Multigrating design for integrated single-atom trapping, manipulation, and readout
[40] | Meng Y, Lee J, Dagenais M, and Rolston S 2015 Appl. Phys. Lett. 107 091110 | A nanowaveguide platform for collective atom-light interaction
[41] | Chen L, Huang C J, Xu X B, Zhang Y C, Ma D Q, Lu Z T, Wang Z B, Chen G J, Zhang J Z, Tang H X, Dong C H, Liu W, Xiang G Y, Guo G C, and Zou C L 2022 Phys. Rev. Appl. 17 034031 | Planar-Integrated Magneto-Optical Trap
[42] | Kuhr S, Alt W, Schrader D, Muller M, Gomer V, and Meschede D 2001 Science 293 278 | Deterministic Delivery of a Single Atom
[43] | Nußmann S, Hijlkema M, Weber B, Rohde F, Rempe G, and Kuhn A 2005 Phys. Rev. Lett. 95 173602 | Submicron Positioning of Single Atoms in a Microcavity
[44] | Dinardo B A and Anderson D Z 2016 Rev. Sci. Instrum. 87 123108 | A technique for individual atom delivery into a crossed vortex bottle beam trap using a dynamic 1D optical lattice
[45] | Yu G, Wang G, Ishikawa H, Umeno M, Soga T, Egawa T, Watanabe J, and Jimbo T 1997 Appl. Phys. Lett. 70 3209 | Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method
[46] | Muth J, Brown J D, Johnson M, Yu Z, Kolbas R, Cook J, and Schetzina J 1999 MRS Int. J. Nitride Semicond. Res. 4 502 | Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys
[47] | Liu J, Bo F, Chang L, Dong C H, Ou X, Regan B, Shen X, Song Q, Yao B, Zhang W, Zou C L, and Xiao Y F 2022 Sci. Chin. Phys. Mech. & Astron. 65 104201 | Emerging material platforms for integrated microcavity photonics
[48] | Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer) | Graduate Texts in Contemporary Physics
[49] | Ketterle W, Durfee D S, and Stamper-Kurn D 1999 arXiv:cond-mat/9904034 | Making, probing and understanding Bose-Einstein condensates
[50] | Huet L, Ammar M, Morvan E, Sarazin N, Pocholle J P, Reichel J, Guerlin C, and Schwartz S 2012 Appl. Phys. Lett. 100 121114 | Experimental investigation of transparent silicon carbide for atom chips
[51] | Schrader D, Kuhr S, Alt W, Muller M, Gomer V, and Meschede D 2001 Appl. Phys. B 73 819 | An optical conveyor belt for single neutral atoms
[52] | Hickman G T and Saffman M 2020 Phys. Rev. A 101 063411 | Speed, retention loss, and motional heating of atoms in an optical conveyor belt