[1] | Turner D W 1970 Philos. Trans. R. Soc. London. Ser. A 268 7 |
[2] | Chastain J and King J R C 1992 Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation) |
[3] | Hüfner S 2013 Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer) |
[4] | Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117 | Theory of high-harmonic generation by low-frequency laser fields
[5] | Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, and Agostini P 2001 Science 292 1689 | Observation of a Train of Attosecond Pulses from High Harmonic Generation
[6] | McNeil B W J and Thompson N R 2010 Nat. Photon. 4 814 | X-ray free-electron lasers
[7] | Amann J, Berg W, Blank V et al. 2012 Nat. Photon. 6 693 | Demonstration of self-seeding in a hard-X-ray free-electron laser
[8] | Allaria E, Appio R, Badano L et al. 2012 Nat. Photon. 6 699 | Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
[9] | Inhester L, Li Z, Zhu X et al. 2019 J. Phys. Chem. Lett. 10 6536 | Spectroscopic Signature of Chemical Bond Dissociation Revealed by Calculated Core-Electron Spectra
[10] | Pathak S, Ibele L M, Boll R et al. 2020 Nat. Chem. 12 795 | Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening
[11] | LaForge A C, Michiels R, Ovcharenko Y et al. 2021 Phys. Rev. X 11 021011 | Ultrafast Resonant Interatomic Coulombic Decay Induced by Quantum Fluid Dynamics
[12] | Blanchet V, Zgierski M Z, Seideman T, and Stolow A 1999 Nature 401 52 | Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy
[13] | Zewail A H 2000 J. Phys. Chem. A 104 5660 | Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond
[14] | Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255 | T IME -R ESOLVED P HOTOELECTRON S PECTROSCOPY OF M OLECULES AND C LUSTERS
[15] | Stolow A, Bragg A E, and Neumark D M 2004 Annu. Rev. Phys. Chem. 104 1719 | Femtosecond Time-Resolved Photoelectron Spectroscopy
[16] | Wu G R, Hockett P, and Stolow A 2011 Phys. Chem. Chem. Phys. 13 18447 | Time-resolved photoelectron spectroscopy: from wavepackets to observables
[17] | Sansone G, Benedetti E, Calegari F et al. 2006 Science 314 443 | Isolated Single-Cycle Attosecond Pulses
[18] | Chini M, Zhao K, and Chang Z 2014 Nat. Photon. 8 178 | The generation, characterization and applications of broadband isolated attosecond pulses
[19] | Hartmann N, Hartmann G, Heider R et al. 2018 Nat. Photon. 12 215 | Attosecond time–energy structure of X-ray free-electron laser pulses
[20] | Duris J, Li S, Driver T et al. 2020 Nat. Photon. 14 30 | Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser
[21] | Maroju P K, Grazioli C, Fraia M D et al. 2020 Nature 578 386 | Attosecond pulse shaping using a seeded free-electron laser
[22] | Kaldun A, Blättermann A, Stooß V et al. 2016 Science 354 738 | Observing the ultrafast buildup of a Fano resonance in the time domain
[23] | Kobayashi Y, Chang K F, Zeng T, Neumark D M, and Leone S R 2019 Science 365 79 | Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy
[24] | Peng L Y, Jiang W C, Geng J W, Xiong W H, and Gong Q 2015 Phys. Rep. 575 1 | Tracing and controlling electronic dynamics in atoms and molecules by attosecond pulses
[25] | Wang C, Gong M, Cheng Y et al. 2023 J. Phys. Chem. Lett. 14 5475 | Time-Resolved Resonant Auger Scattering Clocks Distortion of a Molecule
[26] | Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, and Corkum P B 2002 Phys. Rev. Lett. 88 173903 | Attosecond Streak Camera
[27] | Goulielmakis E, Yakovlev V S, Cavalieri A L et al. 2007 Science 317 769 | Attosecond Control and Measurement: Lightwave Electronics
[28] | Gel'mukhanov F, Odelius M, Polyutov S P, Föhlisch A, and Kimberg V 2021 Rev. Mod. Phys. 93 035001 | Dynamics of resonant x-ray and Auger scattering
[29] | Pahl E, Meyer H D, and Cederbaum L 1996 Z. Phys. D: At. Mol. Clusters 38 215 | Competition between excitation and electronic decay of short-lived molecular states
[30] | Demekhin P V, Chiang Y C, and Cederbaum L S 2011 Phys. Rev. A 84 033417 | Resonant Auger decay of the core-excited C O molecule in intense x-ray laser fields
[31] | Zhang S B and Rohringer N 2014 Phys. Rev. A 89 013407 | Photoemission spectroscopy with high-intensity short-wavelength lasers
[32] | Zhang S B and Rohringer N 2015 Phys. Rev. A 92 043420 | Quantum-beat Auger spectroscopy
[33] | Zhang S B, Kimberg V, and Rohringer N 2016 Phys. Rev. A 94 063413 | Nonlinear resonant Auger spectroscopy in CO using an x-ray pump-control scheme
[34] | Zhang S B, Xie X T, and Wang J G 2017 Phys. Rev. A 96 053420 | Electron-spectral-line profiles of resonances by attosecond XUV or x-ray pulses
[35] | Bian Q, Wu Y, Wang J G, and Zhang S B 2019 Phys. Rev. A 99 033404 | Bond-distance-dependent Auger decay of core-excited using an ultrashort x-ray pump and continuous-wave IR-control scheme
[36] | Shi X, Wu Y, Wang J G, Kimberg V, and Zhang S B 2020 Phys. Rev. A 101 023401 | X-ray transient absorption spectroscopy by an ultrashort x-ray-laser pulse in a continuous-wave IR field
[37] | Zhu Y P, Liu Y R, Zhao X, Kimberg V, and Zhang S B 2021 Chin. Phys. Lett. 38 053201 | Core-Excited Molecules by Resonant Intense X-Ray Pulses Involving Electron-Rotation Coupling
[38] | Zhu Y P, Zhao X, Liu X J, Kimberg V, and Zhang S B 2022 Phys. Rev. A 106 023105 | Coincidence spectroscopy of molecular normal Auger decay by ultrashort x-ray pulses
[39] | Demekhin P V and Cederbaum L S 2011 Phys. Rev. A 83 023422 | Strong interference effects in the resonant Auger decay of atoms induced by intense x-ray fields
[40] | Cederbaum L S and Domcke W 1981 J. Phys. B 14 4665 | Local against non-local complex potential in resonant electron-molecule scattering
[41] | Domcke W 1991 Phys. Rep. 208 97 | Theory of resonance and threshold effects in electron-molecule collisions: The projection-operator approach
[42] | Kukk E, Bozek J D, Cheng W T, Fink R F, Wills A A, and Berrah N 1999 J. Chem. Phys. 111 9642 | Auger decay of the C 1s−12π* resonance in carbon monoxide: Vibrationally and angularly resolved spectra
[43] | Skytt P, Glans P, Gunnelin K et al. 1997 Phys. Rev. A 55 134 | Role of screening and angular distributions in resonant x-ray emission of CO
[44] | Beck M H, Jäckle A, Worth G A, and Meyer H D 2000 Phys. Rep. 324 1 | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets
[45] | Worth G A, Beck M H, Jäckle A, Vendrell O and Meyer H D 2000 The MCTDH Package, Version 8.2. Meyer H D, Version 8.3 (2002), Version 8.4 (2007). Vendrell O and Meyer H D Version 8.5 (2013). Version 8.5 contains the ML-MCTDH algorithm. Current versions: 8.4.18 and 8.5.11 (2019). Used version: exchange with “Used version”. See http://mctdh.uni-hd.de/ |
[46] | Osborne S J, Ausmees A, Svensson S, Kivimäki A, Sairanen O P, de Brito A N, Aksela H, and Aksela S 1995 J. Chem. Phys. 102 7317 | The vibrationally resolved participator Auger spectra of selectively excited C 1 s (2σ)−12π1 vibrational states in carbon monoxide
[47] | Ignatova N, da Cruz V V, Couto R C, Ertan E, Odelius M, Ågren H, Guimarães F F, Zimin A, Polyutov S P, Gel'mukhanov F, and Kimberg V 2017 Phys. Rev. A 95 042502 | Infrared-pump–x-ray-probe spectroscopy of vibrationally excited molecules
[48] | Liu J C, Savchenko V, Kimberg V, Odelius M, and Gel'mukhanov F 2021 Phys. Rev. A 103 022829 | Polarization-sensitive IR-pump–x-ray-probe spectroscopy
[49] | Carravetta V, Gel'mukhanov F K, Ågren H, Sundin S, Osborne S J, de Naves B A, Björneholm O, Ausmees A, and Svensson S 1997 Phys. Rev. A 56 4665 | Excitation-energy-dependent resonant photoemission: C - spectra of carbon monoxide
[50] | Shankar R 2012 Principles of Quantum Mechanics (Berlin: Springer Science & Business Media) |
[51] | Gel'Mukhanov F K, Mazalov L N, and Kondratenko A V 1977 Chem. Phys. Lett. 46 133 | A theory of vibrational structure in the X-ray spectra of molecules
[52] | Correia N, Flores-Riveros A, Ågren H, Helenelund K, Asplund L, and Gelius U 1985 J. Chem. Phys. 83 2035 | Theory of band shape formation in Auger and autoionization spectra of molecules. Numerical applications and new high-resolution spectra for CO