[1] | Mahnke C and Mitschke F 2012 Phys. Rev. A 85 033808 | Possibility of an Akhmediev breather decaying into solitons
[2] | Wang L H, Porsezian K, and He J S 2013 Phys. Rev. E 87 053202 | Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation
[3] | Mežnaršič T, Arh T, Brence J, Pišljar J, Gosar K, Gosar V Z, Žitko R, Zupanič E, and Jeglič P 2019 Phys. Rev. A 99 033625 | Cesium bright matter-wave solitons and soliton trains
[4] | Marchukov O V, Malomed B A, Dunjko V, Ruhl J, Olshanii M, Hulet R G, and Yurovsky V A 2020 Phys. Rev. Lett. 125 050405 | Quantum Fluctuations of the Center of Mass and Relative Parameters of Nonlinear Schrödinger Breathers
[5] | Johansson M, Sukhorukov A A, and Kivshar Y S 2009 Phys. Rev. E 80 046604 | Discrete reduced-symmetry solitons and second-band vortices in two-dimensional nonlinear waveguide arrays
[6] | Kuznetsov E A, Rubenchik A M, and Zakharov V E 1986 Phys. Rep. 142 103 | Soliton stability in plasmas and hydrodynamics
[7] | Lamb K G, Polukhina O, Talipova T, Pelinovsky E, Xiao W, and Kurkin A 2007 Phys. Rev. E 75 046306 | Breather generation in fully nonlinear models of a stratified fluid
[8] | Chabchoub A, Hoffmann N, Onorato M, and Akhmediev N 2012 Phys. Rev. X 2 011015 | Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves
[9] | Chowdury A and Krolikowski W 2017 Phys. Rev. E 95 062226 | Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations
[10] | Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089 | Modulation instability and periodic solutions of the nonlinear Schrödinger equation
[11] | Ma Y C 1979 Stud. Appl. Math. 60 43 | The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation
[12] | Akhmediev N, Soto-Crespo J M, and Ankiewicz A 2009 Phys. Lett. A 373 2137 | Extreme waves that appear from nowhere: On the nature of rogue waves
[13] | Zayed E M E, Shohib R M A, Alngar M E M, Biswas A, Ekici M, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 38 | Optical solitons and conservation laws associated with Kudryashov's sextic power-law nonlinearity of refractive index
[14] | Adem A R, Ntsime B P, Biswas A, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 83 | Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index
[15] | Biswas A, Edoki J, Guggilla P, Khan S, Alzahrani A K, and Belic M R 2021 Ukr. J. Phys. Opt. 22 123 | Cubic quartic optical solitons in Lakshmanan Porsezian Daniel model derived with semi-inverse variational principle
[16] | Pelinovsky D and Grimshaw R 1997 Phys. Lett. A 229 165 | Structural transformation of eigenvalues for a perturbed algebraic soliton potential
[17] | Ziegler V, Dinkel J, Setzer C, and Lonngren K E 2001 Chaos Solitons & Fractals 12 1719 | On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line
[18] | Grimshaw R, Pelinovsky E, and Talipova T 1997 Nonlinear Processes Geophys. 4 237 | The modified Korteweg - de Vries equation in the theory of large - amplitude internal waves
[19] | Ono H 1992 J. Phys. Soc. Jpn. 61 4336 | Soliton Fission in Anharmonic Lattices with Reflectionless Inhomogeneity
[20] | Ralph E A and Pratt L 1994 J. Nonlinear Sci. 4 355 | Predicting eddy detachment for an equivalent barotropic thin jet
[21] | Komatsu T S and Sasa S I 1995 Phys. Rev. E 52 5574 | Kink soliton characterizing traffic congestion
[22] | Ge H X, Dai S Q, Xue Y, and Dong L Y 2005 Phys. Rev. E 71 066119 | Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system
[23] | Li Z P and Liu Y C 2006 Eur. Phys. J. B 53 367 | Analysis of stability and density waves of traffic flow model in an ITS environment
[24] | Khater A H, El-Kalaawy O H, and Callebaut D K 1998 Phys. Scr. 58 545 | Bäcklund Transformations and Exact Solutions for Alfvén Solitons in a Relativistic Electron–Positron Plasma
[25] | Lonngren K E 1998 Opt. Quantum Electron. 30 615 |
[26] | Leblond H and Mihalache D 2009 Phys. Rev. A 79 063835 | Few-optical-cycle solitons: Modified Korteweg–de Vries sine-Gordon equation versus other non–slowly-varying-envelope-approximation models
[27] | Leblond H and Mihalache D 2010 J. Phys. A 43 375205 | Few-optical-cycle dissipative solitons
[28] | Triki H, Leblond H, and Mihalache D 2012 Opt. Commun. 285 3179 | Derivation of a modified Korteweg–de Vries model for few-optical-cycles soliton propagation from a general Hamiltonian
[29] | Leblond H, Triki H, and Mihalache D 2013 Rom. Rep. Phys. 65 925 | Theoretical studies of ultrashort-soliton propagation in nonlinear optical media from a general quantum model
[30] | Leblond H, Grelu P, and Mihalache D 2014 Phys. Rev. A 90 053816 | Models for supercontinuum generation beyond the slowly-varying-envelope approximation
[31] | Wadati M 1972 J. Phys. Soc. Jpn. 32 1681 | The Exact Solution of the Modified Korteweg-de Vries Equation
[32] | Kevrekidis P G, Khare A, Saxena A, and Herring G 2004 J. Phys. A 37 10959 | On some classes of mKdV periodic solutions
[33] | Lamb J L 1980 Elements of Soliton Theory (New York: John Wiley & Sons) |
[34] | Grimshaw R, Pelinovsky E, Talipova T, Ruderman M, and Erdélyi R 2005 Stud. Appl. Math. 114 189 | Short-Lived Large-Amplitude Pulses in the Nonlinear Long-Wave Model Described by the Modified Korteweg-De Vries Equation
[35] | Ankiewicz A, Soto-Crespo J M, and Akhmediev N 2010 Phys. Rev. E 81 046602 | Rogue waves and rational solutions of the Hirota equation
[36] | Zhang G Q and Yan Z 2020 Physica D 410 132521 | Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions
[37] | Geng K L, Zhu B W, Cao Q H, Dai C Q, and Wang Y Y 2023 Nonlinear Dyn. 111 16483 | Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation
[38] | He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301 | Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates
[39] | Wen X K, Jiang J H, Liu W, and Dai C Q 2023 Nonlinear Dyn. 111 13343 | Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation
[40] | Miura R M, Gardner C S, and Kruskal M D 1968 J. Math. Phys. 9 1204 | Korteweg-de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion
[41] | Pego R L and Weinstein M I 1992 Philos. Trans. R. Soc. A 340 47 | Eigenvalues, and instabilities of solitary waves
[42] | Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag) |
[43] | Slyunyaev A V 2001 J. Exp. Theor. Phys. 92 529 | Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity
[44] | Slunyaev A V and Pelinovsky E N 2016 Phys. Rev. Lett. 117 214501 | Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg–de Vries Framework
[45] | Zakharov V E and Shabat A B 1972 J. Exp. Theor. Phys. 34 62 |
[46] | Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) | Solitons, Nonlinear Evolution Equations and Inverse Scattering
[47] | Ma Y L and Li B Q 2022 Eur. Phys. J. Plus 137 861 | Hybrid rogue wave and breather solutions for a complex mKdV equation in few-cycle ultra-short pulse optics
[48] | Alejo M A and Muñoz C 2013 Commun. Math. Phys. 324 233 | Nonlinear Stability of MKdV Breathers