[1] | Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, and Kim C 2017 npj Comput. Mater. 3 54 | Machine learning in materials informatics: recent applications and prospects
[2] | Butler K T, Davies D W, Cartwright H, Isayev O, and Walsh A 2018 Nature 559 547 | Machine learning for molecular and materials science
[3] | Fuhr A S and Sumpter B G 2022 Front. Mater. 9 865270 | Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation
[4] | Noh J, Gu G H, Kim S, and Jung Y 2020 Chem. Sci. 11 4871 | Machine-enabled inverse design of inorganic solid materials: promises and challenges
[5] | Freeze J G, Kelly H R, and Batista V S 2019 Chem. Rev. 119 6595 | Search for Catalysts by Inverse Design: Artificial Intelligence, Mountain Climbers, and Alchemists
[6] | Lu S H, Zhou Q H, Chen X Y, Song Z L, and Wang J L 2022 Natl. Sci. Rev. 9 nwac111 | Inverse design with deep generative models: next step in materials discovery
[7] | Chen C T and Gu G X 2020 Adv. Sci. 7 1902607 | Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
[8] | Noh J, Kim J, Stein H S, Sanchez-Lengeling B, Gregoire J M, Aspuru-Guzik A, and Jung Y 2019 Matter 1 1370 | Inverse Design of Solid-State Materials via a Continuous Representation
[9] | Pei Z R, Rozman K A, Doğan O N, Wen Y H, Gao N, Holm E A, Hawk J A, Alman D E, and Gao M C 2021 Adv. Sci. 8 2101207 | Machine‐Learning Microstructure for Inverse Material Design
[10] | Han T C, Bai X, Thong J T L, Li B W, and Qiu C W 2014 Adv. Mater. 26 1731 | Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials
[11] | Wang J, Dai G L, and Huang J P 2020 iScience 23 101637 | Thermal Metamaterial: Fundamental, Application, and Outlook
[12] | Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1 | Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application
[13] | Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488 | Transforming heat transfer with thermal metamaterials and devices
[14] | Chen J, He J, Pan D K, Wang X T, Yang N, Zhu J J, Yang S A, and Zhang G 2022 Sci. Chin. Phys. Mech. & Astron. 65 117002 | Emerging theory and phenomena in thermal conduction: A selective review
[15] | Li B W, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301 | Thermal Diode: Rectification of Heat Flux
[16] | Li B W, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 | Negative differential thermal resistance and thermal transistor
[17] | Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302 | Experimental Demonstration of a Bilayer Thermal Cloak
[18] | Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048 | Metamaterials for Manipulating Thermal Radiation: Transparency, Cloak, and Expander
[19] | Jiang J H, Lu S, and Chen J 2023 Chin. Phys. Lett. 40 096301 | Phonon Focusing Effect in an Atomic Level Triangular Structure
[20] | Ouyang Y L, Yu C Q, Yan G, and Chen J 2021 Front. Phys. 16 43200 | Machine learning approach for the prediction and optimization of thermal transport properties
[21] | Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050 | Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction
[22] | Hu R, Song J, Liu Y, Xi W, Zhao Y, Yu X, Cheng Q, Tao G, and Luo X 2020 Nano Energy 72 104687 | Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis
[23] | Yan S S, Wang Y, Gao Z B, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301 | Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe
[24] | Roy Chowdhury P and Ruan X L 2022 npj Comput. Mater. 8 12 | Unexpected thermal conductivity enhancement in aperiodic superlattices discovered using active machine learning
[25] | Tan Y, Wang L, Wang Z, Peng J, and Ren J 2021 Chin. Phys. B 30 036301 | Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization*
[26] | Yan S S, Liu Y, Wang Z, Lan X H, Wang Y, and Ren J 2023 Chin. Phys. B 32 057802 | Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
[27] | Dhar A 2008 Adv. Phys. 57 457 | Heat transport in low-dimensional systems
[28] | Zhai J X, Zhang Q Y, Cheng Z H, Ren J, Ke Y Q, and Li B W 2019 Phys. Rev. B 99 195429 | Anomalous transparency induced by cooperative disorders in phonon transport
[29] | Jiang P F, Ouyang Y L, Ren W J, Yu C Q, He J, and Chen J 2021 APL Mater. 9 040703 | Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures
[30] | Yu C Q, Ouyang Y L, and Chen J 2022 Front. Phys. 17 53507 | Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard-Jones solids
[31] | Liu Y and He D H 2021 Chin. Phys. Lett. 38 044401 | Approach to Phonon Relaxation Time and Mean Free Path in Nonlinear Lattices
[32] | Lepri S, Livi R, and Politi A 2003 Phys. Rep. 377 1 | Thermal conduction in classical low-dimensional lattices
[33] | Anderson P W 1958 Phys. Rev. 109 1492 | Absence of Diffusion in Certain Random Lattices
[34] | Ishii K 1973 Prog. Theor. Phys. Suppl. 53 77 | Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System