[1] | Chu S and Majumdar A 2012 Nature 488 294 | Opportunities and challenges for a sustainable energy future
[2] | Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045 | Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond
[3] | Lawrence Livermore National Laboratory, Estimated Energy Use in 2021 https://flowcharts.llnl.gov. |
[4] | DiSalvo F J 1999 Science 285 703 | Thermoelectric Cooling and Power Generation
[5] | Spin Seebeck effect is also included here, which first converts the thermal difference into spin current and then into electric current, through the inverse spin Hall effect. |
[6] | Bell L E 2008 Science 321 1457 | Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
[7] | Tritt T M 2011 Annu. Rev. Mater. Res. 41 433 | Thermoelectric Phenomena, Materials, and Applications
[8] | Shakouri A 2011 Annu. Rev. Mater. Res. 41 399 | Recent Developments in Semiconductor Thermoelectric Physics and Materials
[9] | Lang S B 1974 Sourcebook Pyroelectricity (New York: CRC Press) vol 2 |
[10] | Whatmore R 1986 Rep. Prog. Phys. 49 1335 | Pyroelectric devices and materials
[11] | Lang S B 2005 Phys. Today 58 31 | Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool
[12] | Utilizing the ferro-paraelectric phase transition to generate electricity from temperature fluctuations also belongs to the pyroelectric effect. |
[13] | Sebald G, Guyomar D, and Agbossou A 2009 Smart Mater. Struct. 18 125006 | On thermoelectric and pyroelectric energy harvesting
[14] | Morozovska A, Eliseev E, Svechnikov G, and Kalinin S V 2010 J. Appl. Phys. 108 042009 | Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting
[15] | Yang Y, Guo W, Pradel K C, Zhu G, Zhou Y, Zhang Y, Hu Y, Lin L, and Wang Z L 2012 Nano Lett. 12 2833 | Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy
[16] | Yang Y, Wang S, Zhang Y, and Wang Z L 2012 Nano Lett. 12 6408 | Pyroelectric Nanogenerators for Driving Wireless Sensors
[17] | Yang Y, Jung J H, Yun B K, Zhang F, Pradel K C, Guo W, and Wang Z L 2012 Adv. Mater. 24 5357 | Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead-Free KNbO3 Nanowires
[18] | Rogers J A and Paik U 2010 Nat. Nanotechnol. 5 385 | Nanoscale printing simplified
[19] | Seebeck T J 1822–1823 Abhandlungen der Königlich Preussischen Akademie der Wissenschaften (Berlin: Springer) p 265 |
[20] | Brewster D 1824 Edinburgh. J. Sci. 1 208 |
[21] | Majumdar A 2013 MRS Bull. 38 947 | A new industrial revolution for a sustainable energy future
[22] | Wang Z, Wang L, Chen J, Wang C, and Ren J 2022 Front. Phys. 17 13021 | Geometric heat pump: Controlling thermal transport with time-dependent modulations
[23] | Wang Z, Chen J, and Ren J 2022 Phys. Rev. E 106 L032102 | Geometric heat pump and no-go restrictions of nonreciprocity in modulated thermal diffusion
[24] | Harman T, Taylor P, Walsh M, and LaForge B 2002 Science 297 2229 | Quantum Dot Superlattice Thermoelectric Materials and Devices
[25] | Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P, and Gogna P 2007 Adv. Mater. 19 1043 | New Directions for Low‐Dimensional Thermoelectric Materials
[26] | Reddy P, Jang S Y, Segalman R A, and Majumdar A 2007 Science 315 1568 | Thermoelectricity in Molecular Junctions
[27] | Lee W, Kim K, Jeong W, Zotti L A, Pauly F, Cuevas J C, and Reddy P 2013 Nature 498 209 | Heat dissipation in atomic-scale junctions
[28] | Breuer H P, Petruccione F et al. 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) |
[29] | Haug H, Jauho A P et al. 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer) vol 2 |
[30] | Sze S M, Li Y, and Ng K K 2021 Physics of Semiconductor Devices (New York: John Wiley & Sons) |
[31] | Singh J 2005 Smart Electronic Materials: Fundamentals and Applications (Cambridge: Cambridge University Press) |
[32] | Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247 | Generalized theory of interference, and its applications
[33] | Ben-Aryeh Y 2004 J. Opt. B: Quantum Semiclass. Opt. 6 R1 | Berry and Pancharatnam topological phases of atomic and optical systems
[34] | Sinitsyn N and Nemenman I 2007 Europhys. Lett. 77 58001 | The Berry phase and the pump flux in stochastic chemical kinetics
[35] | Sinitsyn N 2009 J. Phys. A 42 193001 | The stochastic pump effect and geometric phases in dissipative and stochastic systems
[36] | Ren J, Hänggi P, Li B et al. 2010 Phys. Rev. Lett. 104 170601 | Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem
[37] | Ren J, Liu S, and Li B 2012 Phys. Rev. Lett. 108 210603 | Geometric Heat Flux for Classical Thermal Transport in Interacting Open Systems
[38] | Chen T, Wang X B, and Ren J 2013 Phys. Rev. B 87 144303 | Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model
[39] | Wang C, Ren J, and Cao J 2017 Phys. Rev. A 95 023610 | Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics
[40] | Astumian R D and Hänggi P 2002 Phys. Today 55 33 | Brownian Motors
[41] | Rahav S, Horowitz J, and Jarzynski C 2008 Phys. Rev. Lett. 101 140602 | Directed Flow in Nonadiabatic Stochastic Pumps
[42] | Sagawa T and Hayakawa H 2011 Phys. Rev. E 84 051110 | Geometrical expression of excess entropy production
[43] | Yuge T, Sagawa T, Sugita A, and Hayakawa H 2012 Phys. Rev. B 86 235308 | Geometrical pumping in quantum transport: Quantum master equation approach
[44] | Uchiyama C 2014 Phys. Rev. E 89 052108 | Nonadiabatic effect on the quantum heat flux control
[45] | Schnakenberg J 1976 Rev. Mod. Phys. 48 571 | Network theory of microscopic and macroscopic behavior of master equation systems
[46] | Luo J L, van den Broeck C, and Nicolis G 1984 Z. Phys. B - Condens. Matter 56 165 | Stability criteria and fluctuations around nonequilibrium states
[47] | Seifert U 2005 Phys. Rev. Lett. 95 040602 | Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem
[48] | Ren J 2013 Phys. Rev. B 88 220406 | Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces
[49] | Ren J and Zhu J X 2013 Phys. Rev. B 88 094427 | Theory of asymmetric and negative differential magnon tunneling under temperature bias: Towards a spin Seebeck diode and transistor
[50] | Ren J, Fransson J, and Zhu J X 2014 Phys. Rev. B 89 214407 | Nanoscale Spin Seebeck Rectifier: Controlling Thermal Spin Transport across Insulating Magnetic Junctions with Localized Spin
[51] | Tang G M, Chen X B, Ren J, and Wang J 2018 Phys. Rev. B 97 081407 | Rectifying full-counting statistics in a spin Seebeck engine
[52] | Wang L Q, Wang Z, Wang C, and Ren J 2022 Phys. Rev. Lett. 128 067701 | Cycle Flux Ranking of Network Analysis in Quantum Thermal Devices
[53] | Xu L J, Xu G Q, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 128 145901 | Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials
[54] | Xu L J, Xu G Q, Li J X, Li Y, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 129 155901 | Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials
[55] | Lei M, Xu L, and Huang J 2023 Mater. Today Phys. 34 101057 | Spatiotemporal multiphysics metamaterials with continuously adjustable functions
[56] | Lee S W, Yang Y, Lee H W, Ghasemi H, Kraemer D, Chen G, and Cui Y 2014 Nat. Commun. 5 3942 | An electrochemical system for efficiently harvesting low-grade heat energy
[57] | Tusek J, Engelbrecht K, Eriksen D, Dall'Olio S, Tusek J, and Pryds N 2016 Nat. Energy 1 16134 | A regenerative elastocaloric heat pump
[58] | Ma R J, Zhang Z Y, Tong K, Huber D, Kornbluh R, Ju Y S, and Pei Q B 2017 Science 357 1130 | Highly efficient electrocaloric cooling with electrostatic actuation
[59] | Wang Y D, Zhang Z Y, Usui T, Benedict M, Hirose S, Lee J, Kalb J, and Schwartz D 2020 Science 370 129 | A high-performance solid-state electrocaloric cooling system
[60] | Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Grard M, Bouton O, Hirose S, and Defay E 2020 Science 370 125 | Giant temperature span in electrocaloric regenerator
[61] | Meng Y, Zhang Z, Wu H, Wu R, Wu J, Wang H, and Pei Q 2020 Nat. Energy 5 996 | A cascade electrocaloric cooling device for large temperature lift
[62] | Meng Y, Pu J, and Pei Q 2021 Joule 5 780 | Electrocaloric cooling over high device temperature span
[63] | Cui H, Zhang Q, Bo Y, Bai P, Wang M, Zhang C, Qian X, and Ma R 2022 Joule 6 258 | Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density
[64] | Qian X S, Chen X, Zhu L, and Zhang Q M 2023 Science 380 eadg0902 | Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion