[1] | Fan S H and Li W 2022 Nat. Photon. 16 182 | Photonics and thermodynamics concepts in radiative cooling
[2] | Ono M, Chen K F, Li W, and Fan S H 2018 Opt. Express 26 A777 | Self-adaptive radiative cooling based on phase change materials
[3] | Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V, and Troise G 1977 Appl. Energy 3 267 | Nocturnal and diurnal performances of selective radiators
[4] | Raman A P, Anoma M A, Zhu L X, Rephaeli E, and Fan S H 2014 Nature 515 540 | Passive radiative cooling below ambient air temperature under direct sunlight
[5] | Kou J L, Jurado Z O, Chen Z, Fan S H, and Minnich A J 2017 ACS Photon. 4 626 | Daytime Radiative Cooling Using Near-Black Infrared Emitters
[6] | Rephaeli E, Raman A P, and Fan S 2013 Nano Lett. 13 1457 | Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling
[7] | Hervé A, Drévillon J, Ezzahri Y, and Joulain K 2018 J. Quant. Spectrosc. Radiat. Transfer 221 155 | Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure
[8] | Liu T J and Takahara J 2017 Opt. Express 25 A612 | Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling
[9] | Jia Z X, Shuai Y, Li M, Guo Y M, and Tan H P 2018 J. Quant. Spectrosc. Radiat. Transfer 207 23 | Enhancement radiative cooling performance of nanoparticle crystal via oxidation
[10] | Jia Y L, Wang X X, Yin H Y, Yao H W, Wang J Q, and Fan C Z 2021 Appl. Opt. 60 5699 | Highly tunable thermal emitter with vanadium dioxide metamaterials for radiative cooling
[11] | Wang J H and Fan C Z 2022 Opt. Mater. 134 113131 | Thermo-optic modulator based on vanadium dioxide and nonlinear Kerr medium in terahertz region
[12] | Cui Y X, Fung K H, Xu J, Ma H, Jin Y, He S, and Fang N X 2012 Nano Lett. 12 1443 | Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab
[13] | Contractor R, D'Aguanno G, and Menyuk C 2018 Opt. Express 26 24031 | Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces
[14] | Jia Y L, Yin H Y, Yao H W, Wang J Q, and Fan C Z 2021 Results Phys. 25 104301 | Realization of multi-band perfect absorber in graphene based metal-insulator-metal metamaterials
[15] | Kim J, Han K, and Jae W H 2017 Sci. Rep. 7 6740 | Selective dual-band metamaterial perfect absorber for infrared stealth technology
[16] | Liu Y N, Weng X L, Zhang P, Li W X, Gong Y, Zhang L, Han T C, Zhou P H, and Deng L J 2021 Chin. Phys. Lett. 38 034201 | Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling
[17] | Hossain M M, Jia B, and Gu M 2015 Adv. Opt. Mater. 3 1047 | A Metamaterial Emitter for Highly Efficient Radiative Cooling
[18] | Xu L J and Huang J P 2023 Transformation Thermotics and Extended Theories inside and outside Metamaterials (Singapore: Springer) p 9 |
[19] | Huang J P 2020 Theoretical Thermotics Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer) pp 231–242 |
[20] | Raman A P, Li W, and Fan S H 2019 Joule 3 2679 | Generating Light from Darkness
[21] | Dickinson E J F, Ekström H, and Fontes E 2014 Electrochem. Commun. 40 71 | COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review
[22] | Watt F, Bettiol A, Kan J A, Teo E, and Breese M 2005 Int. J. Nanosci. 4 269 | ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW
[23] | Kong A, Cai B Y, Shi P, and Yuan X C 2019 Opt. Express 27 30102 | Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling
[24] | Wu D, Li C, Xu Z H, Liu Y M, Yu Z Y, Yu L, Chen L, Li R F, Ma R, and Des Y H M 2018 Mater. & Des. 139 104 | The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling
[25] | Yin H Y and Fan C Z 2023 Results Phys. 45 106216 | Realization of an efficient radiative cooling emitter with double layer inorganic SiO2 and TiO2 metamaterial
[26] | Yin H Y, Yao H W, Jia Y L, Wang J Q, and Fan C Z 2021 J. Phys. D 54 345501 | Realization of efficient radiative cooling in thermal emitter with inorganic metamaterials
[27] | Yao H W, Wang X X, Yin H Y, Jia Y L, Gao Y, Wang J Q, and Fan C Z 2021 Chin. Phys. B 30 064214 | Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials*
[28] | Kecebas M A, Menguc M P, Kosar A, and Sendur K 2017 J. Quant. Spectrosc. Radiat. Transfer 198 179 | Passive radiative cooling design with broadband optical thin-film filters
[29] | Liu Y T, Son S, Chae D, Jung P H, and Lee H 2020 Sol. Energy Mater. Sol. Cells 213 110561 | Acrylic membrane doped with Al2O3 nanoparticle resonators for zero-energy consuming radiative cooling
[30] | Huang Z F and Ruan X L 2017 Int. J. Heat Mass Transfer 104 890 | Nanoparticle embedded double-layer coating for daytime radiative cooling
[31] | Nilsson T M J, Niklasson G A, and Granqvist C G 1992 Sol. Energy Mater. Sol. Cells 28 175 | A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene