[1] | Martyniuk P, Rogalski A, and Krishna S 2022 Phys. Rev. Appl. 17 027001 | Interband Quantum Cascade Infrared Photodetectors: Current Status and Future Trends
[2] | Giparakis M, Knötig H, Detz H, Beiser M, Schrenk W, Schwarz B, Strasser G, and Andrews A M 2022 Appl. Phys. Lett. 120 071104 | 2.7 μ m quantum cascade detector: Above band gap energy intersubband detection
[3] | Zhou X H, Li N, and Lu W 2019 Chin. Phys. B 28 027801 | Progress in quantum well and quantum cascade infrared photodetectors in SITP
[4] | Hillbrand J, Krüger L M, Dal C S, Knötig H, Heidrich J, Andrews A M, Strasser G, Keller U, and Schwarz B 2021 Opt. Express 29 5774 | High-speed quantum cascade detector characterized with a mid-infrared femtosecond oscillator
[5] | Bigioli A, Armaroli G, Vasanelli A, Gacemi D, Todorov Y, Palaferri D, Li L, Davies A G, Linfield E H, and Sirtori C 2020 Appl. Phys. Lett. 116 161101 | Long-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectors
[6] | Graf M, Hoyler N, Giovannini M, Faist J, and Hofstetter D 2006 Appl. Phys. Lett. 88 241118 | InP-based quantum cascade detectors in the mid-infrared
[7] | Giorgetta F R, Baumann E, Théron R, Pellaton M, Hofstetter D, Fischer M, and Faist J 2008 Appl. Phys. Lett. 92 121101 | Short wavelength (4μm) quantum cascade detector based on strain compensated InGaAs∕InAlAs
[8] | Kong N, Liu J Q, Li L, Liu F Q, Wang L J, and Wang Z G 2010 Chin. Phys. Lett. 27 038501 | Strain-Compensated InGaAs/InAlAs Quantum Cascade Detector of 4.5 μm Operating at Room Temperature
[9] | Kong N, Liu J Q, Li L, Liu F Q, Wang L J, Wang Z G, and Lu W 2010 Chin. Phys. Lett. 27 128503 | A 10.7 μm InGaAs/InAlAs Quantum Cascade Detector
[10] | Tan Z Y, Wan W J, and Cao J C 2020 Chin. Phys. B 29 084212 | Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
[11] | Horiuchi N 2019 Nat. Photon. 13 376 | Infrared applications
[12] | Li K, Liu S M, Zhuo N, Liu J Q, Zhu Y X, Guo K, Zhai S Q, Zhang J C, Wang L J, Li Y, and Liu F Q 2022 Appl. Phys. Express 15 032005 | Quantum cascade detectors with enhanced responsivity using coupled double-well structures
[13] | Liu J Q, Wang F J, Zhai S Q, Zhang J C, Liu S M, Liu J, Wang L J, Liu F Q, and Wang Z G 2018 Appl. Phys. Express 11 042001 | Normal-incidence quantum cascade detector coupled by nanopore structure
[14] | Zhou Y h, Zhai S Q, Wang F J, Liu J Q, Liu F Q, Liu S M, Zhang J C, Zhuo N, Wang L J, and Wang Z G 2016 AIP Adv. 6 035305 | High-speed, room-temperature quantum cascade detectors at 4.3 μm
[15] | Ravikumar A P, De Jesus J, Tamargo M C, and Gmachl C F 2015 Appl. Phys. Lett. 107 141105 | High performance, room temperature, broadband II-VI quantum cascade detector
[16] | Reininger P, Schwarz B, Gansch R, Detz H, MacFarland D, Zederbauer T, Andrews A, Schrenk W, and Strasser G 2015 Opt. Express 23 6283 | Quantum cascade detector utilizing the diagonal-transition scheme for high quality cavities
[17] | Seti J, Voitsekhivska O, Vereshko E, and Tkach M 2022 Appl. Nanosci. 12 533 | Effect of interface phonons on the functioning of quantum cascade detectors operating in the far infrared range
[18] | Hofstetter D, Beck H, Epler J E, Kirste L, and Bour D P 2020 Superlattices Microstruct. 145 106631 | Evidence of strong electron-phonon interaction in a GaN-based quantum cascade emitter
[19] | Ohtani K, Meng B, Franckié M, Bosco L, Ndebeka-Bandou C, Beck M, and Faist J 2019 Sci. Adv. 5 eaau1632 | An electrically pumped phonon-polariton laser
[20] | Lai K T, Haywood S K, Mohamed A H, Missous M, and Gupta R 2005 Appl. Phys. Lett. 87 192113 | Photovoltaic operation up to 270 K of a strain-compensated AlAs∕In0.84Ga0.16As∕AlAs∕InAlAs quantum well infrared photodetector
[21] | Markmann S, Franckié M, Pal S, Stark D, Beck M, Fiebig M, Scalari G, and Faist J 2020 Nanophotonics 10 171 | Two-dimensional spectroscopy on a THz quantum cascade structure
[22] | Ajili L, Scalari G, Hoyler N, Giovannini M, and Faist J 2005 Appl. Phys. Lett. 87 141107 | InGaAs–AlInAs∕InP terahertz quantum cascade laser
[23] | Enobio E C I, Ohtani K, Ohno Y, and Ohno H 2013 Appl. Phys. Lett. 103 231106 | Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope
[24] | Giorgetta F R, Baumann E, Graf M et al. 2009 IEEE J. Quantum Electron. 45 1039 | Quantum Cascade Detectors
[25] | Sauvage S, Moussa Z, Boucaud P, Julien F H, Berger V, and Nagle J 1997 Appl. Phys. Lett. 70 1345 | Room temperature infrared intersubband photoluminescence in GaAs quantum wells
[26] | Kaspi R, Tilton M L, Dente G C, Barresi R, Yang C, and Ongstad A P 2010 Appl. Phys. Lett. 97 201104 | Intersubband photoluminescence in InAs quantum wells
[27] | Łozińska A, Badura M, Bielak K, Ściana B, and Tłaczała M 2020 Opt. Appl. 50 251 | The influence of quantum well and barrier thicknesses on photoluminescence spectra of InGaAs/AlInAs superlattices grown by LP-MOVPE
[28] | Shao J, Lu W, Lü X, Yue F Y, Li Z F, Guo S L, and Chu J H 2006 Rev. Sci. Instrum. 77 063104 | Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer
[29] | Shao J, Yue F Y, Lü X, Lu W, Huang W, Li Z F, Guo S L, and Chu J H 2006 Appl. Phys. Lett. 89 182121 | Photomodulated infrared spectroscopy by a step-scan Fourier transform infrared spectrometer
[30] | Shao J, Lu W, Tsen G K O, Guo S L, and Dell J M 2012 J. Appl. Phys. 112 063512 | Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice
[31] | Zhu L Q, Shao J, Chen X R, Li Y Q, Zhu L, Qi Z, Lin T, Bai W, Tang X D, and Chu J H 2016 Phys. Rev. B 94 155201 | Photoinduced magnetization effect in a -type single crystal investigated by infrared photoluminescence
[32] | Chen X R, Zhu L Q, and Shao J 2019 Rev. Sci. Instrum. 90 093106 | Spatially resolved and two-dimensional mapping modulated infrared photoluminescence spectroscopy with functional wavelength up to 20 μm
[33] | Wang F J, Liu S M, Ye X L, Zhuo N, Liu J Q, Wang L J, Zhang J C, Zhai S Q, Liu F Q, and Wang Z G 2018 J. Nanosci. Nanotechnol. 18 7604 | Long Wavelength Infrared Quantum Cascade Detector
[34] | Eaves L, Smith A, Skolnick M, and Cockayne B 1982 J. Appl. Phys. 53 4955 | An investigation of the deep level photoluminescence spectra of InP(Mn), InP(Fe), and of undoped InP
[35] | Klein P B, Furneaux J E, and Henry R L 1984 Phys. Rev. B 29 1947 | Time-dependent photoluminescence of InP:Fe
[36] | Willatzen M and Voon L C L Y 2009 The ${\boldsymbol k}$$\cdot$${\boldsymbol p}$ Method (Berlin: Springer Science & Business Media) |
[37] | Wetzel C, Winkler R, Drechsler M, Meyer B, Rössler U, Scriba J, Kotthaus J, Härle V, and Scholz F 1996 Phys. Rev. B 53 1038 | Electron effective mass and nonparabolicity in As/InP quantum wells
[38] | Chao C Y and Chuang S L 1992 Phys. Rev. B 46 4110 | Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells
[39] | Sun Y, Thompson S E, and Nishida T 2010 Strain Effect in Semiconductors: Theory and Device Applications (Berlin: Springer Science & Business Media) |
[40] | Vurgaftman I, Meyer J R, and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 | Band parameters for III–V compound semiconductors and their alloys
[41] | Boyd J P, Marilyn T, and Eliot P T S 2001 Chebyshev and Fourier Spectral Methods 2nd edn (New York: Dover Publications, Inc.) |
[42] | Poças L, Lopes E, Duarte J, Dias I, Lourenço S, Laureto E, Valadares M, Guimaraes P, Cury L, and Harmand J 2005 J. Appl. Phys. 97 103518 | The effect of potential fluctuations on the optical properties of InGaAs∕InAlAs superlattices
[43] | Yu P Y and Cardona M 2003 Fundamentals of Semiconductors: Physics and Materials Properties (Berlin: Springer Science & Business Media) |
[44] | Li J and Ning C Z 2004 Phys. Rev. B 70 125309 | Effects of electron-electron and electron-phonon scatterings on the linewidths of intersubband transitions in a quantum well
[45] | Reininger P, Schwarz B, Detz H, MacFarland D, Zederbauer T, Andrews A M, Schrenk W, Baumgartner O, Kosina H, and Strasser G 2014 Appl. Phys. Lett. 105 091108 | Diagonal-transition quantum cascade detector
[46] | Huang K and Zhu B F 1988 Phys. Rev. B 38 13377 | Dielectric continuum model and Fröhlich interaction in superlattices