[1] | Huang B V, Clark G, Navarro-Moratalla E et al. 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[2] | Gong C, Li L, Li Z et al. 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[3] | He J J and Frauenheim T 2020 J. Phys. Chem. Lett. 11 6219 | Optically Driven Ultrafast Magnetic Order Transitions in Two-Dimensional Ferrimagnetic MXenes
[4] | Deng Y J, Yu Y J, Song Y C et al. 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[5] | O'Hara D J, Zhu T, Trout A H et al. 2018 Nano Lett. 18 3125 | Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit
[6] | Beaurepaire E, Merle J C, Daunois A, and Bigot J Y 1996 Phys. Rev. Lett. 76 4250 | Ultrafast Spin Dynamics in Ferromagnetic Nickel
[7] | Kirilyuk A, Kimel A V, and Rasing T 2010 Rev. Mod. Phys. 82 2731 | Ultrafast optical manipulation of magnetic order
[8] | Krieger K, Elliott P, Muller T, Singh N, Dewhurst J K, Gross E K U, and Sharma S 2017 J. Phys.: Condens. Matter 29 224001 | Ultrafast demagnetization in bulk versus thin films: an ab initio study
[9] | Chekhov A L, Behovits Y, Heitz J J F et al. 2021 Phys. Rev. X 11 041055 | Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses
[10] | Tauchert S R, Volkov M, Ehberger D et al. 2022 Nature 602 73 | Polarized phonons carry angular momentum in ultrafast demagnetization
[11] | Mishra K, Rowan-Robinson R M, Ciuciulkaite A, Davies C S, Dmitriev A, Kapaklis V, Kimel A V, and Kirilyuk A 2022 Nano Lett. 22 9773 | Ultrafast Demagnetization Control in Magnetophotonic Surface Crystals
[12] | Zhang W, Lin J X, Huang T X, Malinowski G, Hehn M, Xu Y, Mangin S, and Zhao W S 2022 Phys. Rev. B 105 054410 | Role of spin-lattice coupling in ultrafast demagnetization and all optical helicity-independent single-shot switching in alloys
[13] | Zhang P Y, Chung T F, Li Q W et al. 2022 Nat. Mater. 21 1373 | All-optical switching of magnetization in atomically thin CrI3
[14] | Jakobs F and Atxitia U 2022 Phys. Rev. Lett. 129 037203 | Universal Criteria for Single Femtosecond Pulse Ultrafast Magnetization Switching in Ferrimagnets
[15] | Stupakiewicz A, Davies C S, Szerenos K, Afanasiev D, Rabinovich K S, Boris A V, Caviglia A, Kimel A V, and Kirilyuk A 2021 Nat. Phys. 17 489 | Ultrafast phononic switching of magnetization
[16] | Selzer S, Salemi L, Deák A, Simon E, Szunyogh L, Oppeneer P M, and Nowak U 2022 Phys. Rev. B 105 174416 | Current-induced switching of antiferromagnetic order in from first principles
[17] | Lefkidis G and Hübner W 2007 Phys. Rev. B 76 014418 | First-principles study of ultrafast magneto-optical switching in NiO
[18] | Disa A S, Fechner M, Nova T F, Liu B, Först M, Prabhakaran D, Radaelli P G, and Cavalleri A 2020 Nat. Phys. 16 937 | Polarizing an antiferromagnet by optical engineering of the crystal field
[19] | Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R, and Cavalleri A 2016 Nat. Phys. 13 132 | An effective magnetic field from optically driven phonons
[20] | You W J, Tengdin P, Chen C et al. 2018 Phys. Rev. Lett. 121 077204 | Revealing the Nature of the Ultrafast Magnetic Phase Transition in Ni by Correlating Extreme Ultraviolet Magneto-Optic and Photoemission Spectroscopies
[21] | Li G, Medapalli R, Mentink J H et al. 2022 Nat. Commun. 13 2998 | Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh
[22] | Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 | Density-Functional Theory for Time-Dependent Systems
[23] | Xiao D, Liu G B, Feng W X, Xu X D, and Yao W 2012 Phys. Rev. Lett. 108 196802 | Coupled Spin and Valley Physics in Monolayers of and Other Group-VI Dichalcogenides
[24] | Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, and Marie X 2014 Phys. Rev. B 90 161302(R) | Exciton valley dynamics probed by Kerr rotation in monolayers
[25] | Kumar A, Yagodkin D, Stetzuhn N, Kovalchuk S, Melnikov A, Elliott P, Sharma S, Gahl C, and Bolotin K I 2021 Nano Lett. 21 7123 | Spin/Valley Coupled Dynamics of Electrons and Holes at the MoS2 –MoSe2 Interface
[26] | Cao T, Wang G, Han W et al. 2012 Nat. Commun. 3 887 | Valley-selective circular dichroism of monolayer molybdenum disulphide
[27] | Cai Y Q, Lan J H, Zhang G, and Zhang Y W 2014 Phys. Rev. B 89 035438 | Lattice vibrational modes and phonon thermal conductivity of monolayer MoS
[28] | Hahn S, Kim K, Kim K et al. 2019 Nature 570 496 | 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
[29] | Lian C, Guan M X, Hu S Q, Zhang J, and Meng S 2018 Adv. Theory Simul. 1 201800055 | Photoexcitation in Solids: First-Principles Quantum Simulations by Real-Time TDDFT
[30] | Ullrich C A 2011 Time-Dependent Density-Functional Theory Concepts and Applications (Oxford: Oxford University Press) |
[31] | Krieger K, Dewhurst J K, Elliott P, Sharma S, and Gross E K U 2015 J. Chem. Theory Comput. 11 4870 | Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT
[32] | Bornemann F A, Nettesheim P, and Schutte C 1996 J. Chem. Phys. 105 1074 | Quantum‐classical molecular dynamics as an approximation to full quantum dynamics
[33] | Zhu Z Y, Cheng Y C, and Schwingenschlögl U 2011 Phys. Rev. B 84 153402 | Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors
[34] | Shi H L, Pan H, Zhang Y W, and Yakobson B I 2013 Phys. Rev. B 87 155304 | Quasiparticle band structures and optical properties of strained monolayer MoS and WS
[35] | Kadantsev E S and Hawrylak P 2012 Solid State Commun. 152 909 | Electronic structure of a single MoS2 monolayer
[36] | Zhang L F and Niu Q 2015 Phys. Rev. Lett. 115 115502 | Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal Lattices
[37] | Du L J, Tang J, Zhao Y C et al. 2019 Adv. Funct. Mater. 29 1904734 | Lattice Dynamics, Phonon Chirality, and Spin–Phonon Coupling in 2D Itinerant Ferromagnet Fe3 GeTe2
[38] | Shin D, Hubener H, De Giovannini U, Jin H, Rubio A, and Park N 2018 Nat. Commun. 9 638 | Phonon-driven spin-Floquet magneto-valleytronics in MoS2
[39] | Disa A S, Nova T F, and Cavalleri A 2021 Nat. Phys. 17 1087 | Engineering crystal structures with light
[40] | Jiang X, Zheng Q J, Lan Z G, Saidi W A, Ren X G, and Zhao J 2021 Sci. Adv. 7 eabf3759 | Real-time GW -BSE investigations on spin-valley exciton dynamics in monolayer transition metal dichalcogenide
[41] | Juraschek D M, Narang P, and Spaldin N A 2020 Phys. Rev. Res. 2 043035 | Phono-magnetic analogs to opto-magnetic effects
[42] | Juraschek D M, Neuman T, and Narang P 2022 Phys. Rev. Res. 4 013129 | Giant effective magnetic fields from optically driven chiral phonons in paramagnets
[43] | Griffiths D J and Schroeter D F 2018 Introduction to Quantum Mechanics (New York: Prentice Hall) | Introduction to Quantum Mechanics
[44] | Okyay M S, Kulahlioglu A H, Kochan D, and Park N 2020 Phys. Rev. B 102 104304 | Resonant amplification of the inverse Faraday effect magnetization dynamics of time reversal symmetric insulators
[45] | Neufeld O, Tancogne-Dejean N, De Giovannini U, Hübener H, and Rubio A 2023 npj Comput. Mater. 9 39 | Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers
[46] | Hertel R 2006 J. Magn. Magn. Mater. 303 L1 | Theory of the inverse Faraday effect in metals
[47] | Pershan P S, van der Ziel J P, and Malmstrom L D 1966 Phys. Rev. 143 574 | Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena
[48] | Mikhaylovskiy R V, Hendry E, and Kruglyak V V 2012 Phys. Rev. B 86 100405 | Ultrafast inverse Faraday effect in a paramagnetic terbium gallium garnet crystal
[49] | Yun W S, Han S W, Hong S C, Kim I G, and Lee J D 2012 Phys. Rev. B 85 033305 | Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- semiconductors ( Mo, W; S, Se, Te)
[50] | Yeh P C, Jin W, Zaki N et al. 2015 Phys. Rev. B 91 041407 | Layer-dependent electronic structure of an atomically heavy two-dimensional dichalcogenide
[51] | Kumar A and Ahluwalia P K 2012 Eur. Phys. J. B 85 186 | Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors