[1] | Narita N, Nagai S, Suzuki S, and Nakao K 1998 Phys. Rev. B 58 11009 | Optimized geometries and electronic structures of graphyne and its family
[2] | Enyashin A N and Ivanovskii A L 2011 Phys. Status Solidi B 248 1879 | Graphene allotropes
[3] | Crespi V H, Benedict L X, Cohen M L, and Louie S G 1996 Phys. Rev. B 53 R13303 | Prediction of a pure-carbon planar covalent metal
[4] | Deza M, Fowler P W, Shtogrin M, and Vietze K 2000 J. Chem. Inf. Comput. Sci. 40 1325 | Pentaheptite Modifications of the Graphite Sheet
[5] | Bucknum M J and Castro E A 2008 Solid State Sci. 10 1245 | The squarographites: A lesson in the chemical topology of tessellations in 2- and 3-dimensions
[6] | Liu Y, Wang G, Huang Q, Guo L, and Chen X 2012 Phys. Rev. Lett. 108 225505 | Structural and Electronic Properties of Graphene: A Two-Dimensional Carbon Allotrope with Tetrarings
[7] | Kang Y T, Lu C, Yang F, and Yao D X 2019 Phys. Rev. B 99 184506 | Single-orbital realization of high-temperature superconductivity in the square-octagon lattice
[8] | de Crasto L F, Ferreira G J, and Miwa R H 2019 Phys. Chem. Chem. Phys. 21 22344 | Topological flat band, Dirac fermions and quantum spin Hall phase in 2D Archimedean lattices
[9] | Fan Q T, Yan L H, Tripp M W, Krejci O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, and Gottfried J M 2021 Science 372 852 | Biphenylene network: A nonbenzenoid carbon allotrope
[10] | Hamed M A, Zarghami D M, Molaie F, Fooladapanjeh S, Farzadian O, and Spitas C 2022 Comput. Mater. Sci. 214 111761 | A theoretical insight into the mechanical properties and phonon thermal conductivity of biphenylene network structure
[11] | Liu G, Chen T, Li X, Xu Z, and Xiao X 2022 Appl. Surf. Sci. 599 153993 | Electronic transport in biphenylene network monolayer: Proposals for 2D multifunctional carbon-based nanodevices
[12] | Tong Z, Pecchia A, Yam C, Dumitrica T, and Frauenheim T 2022 Adv. Energy Mater. 12 2200657 | Ultrahigh Electron Thermal Conductivity in T‐Graphene, Biphenylene, and Net‐Graphene
[13] | Veeravenkata H P and Jain A 2021 Carbon 183 893 | Density functional theory driven phononic thermal conductivity prediction of biphenylene: A comparison with graphene
[14] | Luo Y, Ren C, Xu Y, Yu J, Wang S, and Sun M 2021 Sci. Rep. 11 19008 | A first principles investigation on the structural, mechanical, electronic, and catalytic properties of biphenylene
[15] | Ren K, Shu H, Huo W, Cui Z, and Xu Y 2022 Nanotechnology 33 345701 | Tuning electronic, magnetic and catalytic behaviors of biphenylene network by atomic doping
[16] | Xing N, Liu Z, Wang Z, Gao Y, Li Q, and Wang H 2022 Phys. Chem. Chem. Phys. 24 27474 | The reduction reaction of carbon dioxide on a precise number of Fe atoms anchored on two-dimensional biphenylene
[17] | Feng Z, Ma T, Li R, Zhu M, Shi D, Tang Y, and Dai X 2022 Mol. Catal. 530 112579 | Electrochemical nitrogen reduction reaction on the precise number of Mo atoms anchored biphenylene
[18] | Farzadian O, Dehaghani M Z, Kostas K V, Mashhadzadeh A H, and Spitas C 2022 Nanotechnology 33 355705 | A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: a molecular dynamic study
[19] | Zarghami D M, Farzadian O, Kostas K V, Molaei F, Spitas C, and Hamed M A 2022 Physica E 144 115411 | Theoretical study of heat transfer across biphenylene/h-BN superlattice nanoribbons
[20] | Black-Schaffer A M and Honerkamp C 2014 J. Phys.: Condens. Matter 26 423201 | Chiral d -wave superconductivity in doped graphene
[21] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[22] | Ma T X, Yang F, Huang Z B, and Lin H Q 2017 Sci. Rep. 7 19 | Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons
[23] | Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059 | Tuning superconductivity in twisted bilayer graphene
[24] | Li J, Jin S, Yang F, and Yao D X 2020 Phys. Rev. B 102 174509 | Electronic structure, magnetism, and high-temperature superconductivity in multilayer octagraphene and octagraphite
[25] | Li J and Yao D X 2022 Chin. Phys. B 31 017403 | Superconductivity in octagraphene
[26] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[27] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[28] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 | Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
[29] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[30] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[31] | Giannozzi P, Baroni S, and Bonini N 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[32] | Piscanec S, Lazzeri M, Mauri F, Ferrari A C, and Robertson J 2004 Phys. Rev. Lett. 93 185503 | Kohn Anomalies and Electron-Phonon Interactions in Graphite
[33] | Liu P F, Li J, Zhang C, Tu X H, Zhang J, Zhang P, Wang B T, and Singh D J 2021 Phys. Rev. B 104 235422 | Type-II Dirac cones and electron-phonon interaction in monolayer biphenylene from first-principles calculations
[34] | Parr R G, Craig D P, and Ross I G 1950 J. Chem. Phys. 18 1561 | Molecular Orbital Calculations of the Lower Excited Electronic Levels of Benzene, Configuration Interaction Included
[35] | Castro N A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[36] | Schüler M, Rösner M, Wehling T O, Lichtenstein A I, and Katsnelson M I 2013 Phys. Rev. Lett. 111 036601 | Optimal Hubbard Models for Materials with Nonlocal Coulomb Interactions: Graphene, Silicene, and Benzene
[37] | Shibayama Y, Sato H, Enoki T, and Endo M 2000 Phys. Rev. Lett. 84 1744 | Disordered Magnetism at the Metal-Insulator Threshold in Nano-Graphite-Based Carbon Materials
[38] | López-Sancho M P, de Juan F, and Vozmediano M A H 2009 Phys. Rev. B 79 075413 | Magnetic moments in the presence of topological defects in graphene
[39] | Wehling T O, Şaşıoğlu E, Friedrich C, Lichtenstein A I, Katsnelson M I, and Blügel S 2011 Phys. Rev. Lett. 106 236805 | Strength of Effective Coulomb Interactions in Graphene and Graphite
[40] | Vardeny Z and Tauc J 1985 Phys. Rev. Lett. 54 1844 | Method for Direct Determination of the Effective Correlation Energy of Defects in Semiconductors: Optical Modulation Spectroscopy of Dangling Bonds
[41] | Baeriswyl D, Campbell D K, and Mazumdar S 1986 Phys. Rev. Lett. 56 1509 | Correlations and Defect Energies
[42] | Şaşıoğlu E, Friedrich C, and Blügel S 2011 Phys. Rev. B 83 121101 | Effective Coulomb interaction in transition metals from constrained random-phase approximation
[43] | Liu F, Liu C C, Wu K, Yang F, and Yao Y 2013 Phys. Rev. Lett. 111 066804 | Chiral Superconductivity in Bilayer Silicene
[44] | Liu Y B, Zhang Y, Chen W Q, and Yang F 2023 Phys. Rev. B 107 014501 | High-angular-momentum topological superconductivities in twisted bilayer quasicrystal systems
[45] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 | Transition temperature of strong-coupled superconductors reanalyzed
[46] | Gu Q Y, Xing D Y, and Sun J 2019 Chin. Phys. Lett. 36 097401 | Superconducting Single-Layer T-Graphene and Novel Synthesis Routes