[1] | Žutić I, Fabian J, and Sarma S D 2004 Rev. Mod. Phys. 76 323 | Spintronics: Fundamentals and applications
[2] | Zhu J G J and Park C 2006 Mater. Today 9 36 | Magnetic tunnel junctions
[3] | Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P, and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711 | Review on spintronics: Principles and device applications
[4] | He B, Hu Y, Zhao C, Wei J, Zhang J, Zhang Y, Cheng C, Li J, Nie Z, Luo Y, Zhou Y, Zhang S, Zeng Z, Peng Y, Coey J M D, Han X, and Yu G 2023 Adv. Electron. Mater. 9 2201240 | Realization of Zero‐Field Skyrmions in a Magnetic Tunnel Junction
[5] | Miao G X, Münzenberg M, and Moodera J S 2011 Rep. Prog. Phys. 74 036501 | Tunneling path toward spintronics
[6] | Botsch L, Lorite I, Kumar Y, Esquinazi P D, Zajadacz J, and Zimmer K 2019 ACS Appl. Electron. Mater. 1 1832 | All-Semiconducting Spin Filter Prepared by Low-Energy Proton Irradiation
[7] | Novoselov K S, Mishchenko A, Carvalho A, and Neto A H C 2016 Science 353 aac9439 | 2D materials and van der Waals heterostructures
[8] | Liu Y, Huang Y, and Duan X 2019 Nature 567 323 | Van der Waals integration before and beyond two-dimensional materials
[9] | Liang S J, Cheng B, Cui X, and Miao F 2019 Adv. Mater. 32 1903800 | Van der Waals Heterostructures for High‐Performance Device Applications: Challenges and Opportunities
[10] | Castellanos-Gomez A, Duan X, Fei Z, Gutierrez H R, Huang Y, Huang X, Quereda J, Qian Q, Sutter E, and Sutter P 2022 Nat. Rev. Methods Primers 2 58 | Van der Waals heterostructures
[11] | Zhang Y, Xu H, Feng J, Wu H, Yu G, and Han X 2021 Chin. Phys. B 30 118504 | Magnetic two-dimensional van der Waals materials for spintronic devices*
[12] | Zhang L S, Zhou J, Li H, Shen L, and Feng Y P 2021 Phys. Rev. Appl. 8 021308 | Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications
[13] | Elahi E, Dastgeer G, Sharma P R, Nisar S, Suleman M, Iqbal M W, Imran M, Aslam M, and Imran A 2022 J. Phys. D 55 423001 | A brief review on the spin valve magnetic tunnel junction composed of 2D materials
[14] | Hao Q H, Dai H W, Cai M H, Chen X D, Xing Y T, Chen H J, Zhai T Y, Wang X, and Han J B 2022 Adv. Electron. Mater. 8 2200164 | 2D Magnetic Heterostructures and Emergent Spintronic Devices
[15] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[16] | Zhang G J, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067 | Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy
[17] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[18] | Wang Y P and Long M Q 2020 Phys. Rev. B 101 024411 | Electronic and magnetic properties of van der Waals ferromagnetic semiconductor
[19] | Wimmer S, Sánchez-Barriga J, Küppers P et al. 2021 Adv. Mater. 33 2102935 | Mn‐Rich MnSb2 Te4 : A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K
[20] | Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, and Morpurgo A F 2019 Nat. Nanotechnol. 14 1116 | Determining the phase diagram of atomically thin layered antiferromagnet CrCl3
[21] | Otrokov M M, Klimovskikh I I, Bentmann H et al. 2019 Nature 576 416 | Prediction and observation of an antiferromagnetic topological insulator
[22] | May A F, Calder S, Cantoni C, Cao H, and McGuire M A 2016 Phys. Rev. B 93 014411 | Magnetic structure and phase stability of the van der Waals bonded ferromagnet
[23] | Niu W, Cao Z, Wang Y, Wu Z, Zhang X, Han W, Wei L, Wang L, Xu Y, Zou Y, He L, and Pu Y 2021 Phys. Rev. B 104 125429 | Antisymmetric magnetoresistance in nanodevices of inhomogeneous thickness
[24] | Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072 | From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions
[25] | Hu C, Yan F, Li Y, and Wang K 2021 Chin. Phys. B 30 097505 | Vertical WS2 spin valve with Ohmic property based on Fe3 GeTe2 electrodes*
[26] | Zheng Y H, Ma X L, Yan F G, Lin H L, Zhu W K, Ji Y, Wang R S, and Wang K Y 2022 npj 2D Mater. Appl. 6 62 | Spin filtering effect in all-van der Waals heterostructures with WSe2 barriers
[27] | Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303 | Tunneling Spin Valves Based on Fe3 GeTe2 /hBN/Fe3 GeTe2 van der Waals Heterostructures
[28] | Min K H, Lee D H, Choi S J, Lee I H, Seo J, Kim D W, Ko K T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, and Jung S 2022 Nat. Mater. 21 1144 | Tunable spin injection and detection across a van der Waals interface
[29] | Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, and Wang L 2019 Sci. Adv. 5 eaaw0409 | Antisymmetric magnetoresistance in van der Waals Fe3 GeTe2 /graphite/Fe3 GeTe2 trilayer heterostructures
[30] | Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K, and Wang K Y 2020 ACS Appl. Mater. & Interfaces 12 43921 | Spin-Valve Effect in Fe3 GeTe2 /MoS2 /Fe3 GeTe2 van der Waals Heterostructures
[31] | Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 2104658 | Large Tunneling Magnetoresistance in van der Waals Ferromagnet/Semiconductor Heterojunctions
[32] | Wang Z A, Xue W, Yan F, Zhu W, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, and Wang K 2023 Nano Lett. 23 710 | Selectively Controlled Ferromagnets by Electric Fields in van der Waals Ferromagnetic Heterojunctions
[33] | Carteaux V, Brunet D, Ouvrard G, and Andre G 1995 J. Phys.: Condens. Matter 7 69 | Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2 Ge2 Te6
[34] | Sharma M, Wang S X, and Nickel J H 1999 Phys. Rev. Lett. 82 616 | Inversion of Spin Polarization and Tunneling Magnetoresistance in Spin-Dependent Tunneling Junctions
[35] | Daqiq R and Ghobadi N 2016 J. Supercond. Novel Magn. 29 1675 | Effect of Tunnel Barrier Thickness on Spin-Transfer Torque, Charge Current, and Shot Noise in a Magnetic Tunnel Junction Nanostructure
[36] | Lin H, Yan F, Hu C, Zheng Y, Sheng Y, Zhu W, Wang Z, Zheng H, and Wang K 2022 Nanoscale 14 2352 | Current-assisted magnetization reversal in Fe3 GeTe2 van der Waals homojunctions
[37] | Tsymbal E Y, Mryasov O N, and LeClair P R 2003 J. Phys.: Condens. Matter 15 R109 | Spin-dependent tunnelling in magnetic tunnel junctions