[1] | Mihalache D 2017 Rom. Rep. Phys. 69 403 |
[2] | Zhang X M, Qin Y H, Ling L M, and Zhao L Z 2021 Chin. Phys. Lett. 38 090201 | Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation
[3] | Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201 | Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation
[4] | Zhou Q 2022 Chin. Phys. Lett. 39 010501 | Influence of Parameters of Optical Fibers on Optical Soliton Interactions
[5] | Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202 | Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity
[6] | Longhi S 2015 Opt. Lett. 40 1117 | Fractional Schrödinger equation in optics
[7] | Dong L W and Huang C M 2019 Nonlinear Dyn. 98 1019 | Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials
[8] | Zeng L W and Zeng J H 2019 Nonlinear Dyn. 98 985 | One-dimensional gap solitons in quintic and cubic–quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential
[9] | Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501 | Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schrödinger Equation
[10] | Li P F, Li R J, and Dai C Q 2021 Opt. Express 29 3193 | Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction
[11] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 | Real Spectra in Non-Hermitian Hamiltonians Having Symmetry
[12] | Klaiman S, Günther U, and Moiseyev N 2008 Phys. Rev. Lett. 101 080402 | Visualization of Branch Points in -Symmetric Waveguides
[13] | Driben R and Malomed B A 2011 Opt. Lett. 36 4323 | Stability of solitons in parity-time-symmetric couplers
[14] | Zhu X, Yang F, Cao S, Xie J, and He Y 2020 Opt. Express 28 1631 | Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices
[15] | Pathak J, Lu Z, Hunt B R, Girvan M, and Ott E 2017 Chaos 27 121102 | Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
[16] | Amil P, Soriano M C, and Masoller C 2019 Chaos 29 113111 | Machine learning algorithms for predicting the amplitude of chaotic laser pulses
[17] | Panday A, Lee W S, Dutta S, and Jalan S 2021 Chaos 31 031106 | Machine learning assisted network classification from symbolic time-series
[18] | Raissi M, Perdikaris P, and Karniadakis G E 2019 J. Comput. Phys. 378 686 | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
[19] | Pu J C, Peng W Q, and Chen Y 2021 Wave Motion 107 102823 | The data-driven localized wave solutions of the derivative nonlinear Schrödinger equation by using improved PINN approach
[20] | Zhou Z J and Yan Z Y 2021 Commun. Theor. Phys. 73 105006 | Deep learning neural networks for the third-order nonlinear Schrödinger equation: bright solitons, breathers, and rogue waves
[21] | Baydin A G, Pearlmutter B A, Radul A A, and Siskind J M 2018 J. Mach. Learn. Res. 18(153) 1 |
[22] | Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202 | Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases
[23] | Stein M 1987 Technometrics 29 143 | Large Sample Properties of Simulations Using Latin Hypercube Sampling
[24] | Golev A, Iliev A, and Kyurkchiev N 2017 Int. J. Sci. Eng. Technol. 4 6 |
[25] | Li P F, Mihalache D, and Malomed B A 2018 Philos. Trans. R. Soc. A 376 20170378 | Optical solitons in media with focusing and defocusing saturable nonlinearity and a parity-time-symmetric external potential