[1] | Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318 | A quantum engineer's guide to superconducting qubits
[2] | Müller C, Cole J H, and Lisenfeld J 2019 Rep. Prog. Phys. 82 124501 | Towards understanding two-level-systems in amorphous solids: insights from quantum circuits
[3] | Wenner J, Neeley M, Bialczak R C, Lenander M, Lucero E, ÓConnell A D, Sank D, Wang H, Weides M, Cleland A N, and Martinis J M 2011 Supercond. Sci. Technol. 24 065001 | Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits
[4] | Rosenberg D, Weber S, Conway D, Yost D, Mallek J, Calusine G, Das R, Kim D, Schwartz M, Woods W, Yoder J L, and Oliver W D 2019 arXiv:1906.11146 [quant-ph] | 3D integration and packaging for solid-state qubits
[5] | Huang S, Lienhard B, Calusine G, Vepsäläinen A, Braumüller J, Kim D K, Melville A J, Niedzielski B M, Yoder J L, Kannan B, Orlando T P, Gustavsson S, and Oliver W D 2021 PRX Quantum 2 020306 | Microwave Package Design for Superconducting Quantum Processors
[6] | Klimov P V, Kelly J, Chen Z et al. 2018 Phys. Rev. Lett. 121 090502 | Fluctuations of Energy-Relaxation Times in Superconducting Qubits
[7] | Burnett J J, Bengtsson A, Scigliuzzo M, Niepce D, Kudra M, Delsing P, and Bylander J 2019 npj Quantum Inf. 5 54 | Decoherence benchmarking of superconducting qubits
[8] | Schlör S, Lisenfeld J, Müller C, Bilmes A, Schneider A, Pappas D P, Ustinov A V, and Weides M 2019 Phys. Rev. Lett. 123 190502 | Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators
[9] | Carroll M, Rosenblatt S, Jurcevic P, Lauer I, and Kandala A 2022 npj Quantum Inf. 8 132 | Dynamics of superconducting qubit relaxation times
[10] | Sheldon S, Sandberg M, Paik H, Abdo B, Chow J M, Steffen M, and Gambetta J M 2017 Appl. Phys. Lett. 111 222601 | Characterization of hidden modes in networks of superconducting qubits
[11] | Kelly J, Barends R, Fowler A G, Megrant A, Jeffrey E, White T C, Sank D, Mutus J Y, Campbell B, Chen Y U, Chen Z, Chiaro B, Dunsworth A, Hoi I C, Neill C, O'Malley P J J, Quintana C, Roushan P, Vainsencher A, Wenner J, Cleland A N, Martinis J M 2015 Nature 519 66 | State preservation by repetitive error detection in a superconducting quantum circuit
[12] | Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F, Yu D P 2020 Phys. Rev. Lett. 125 240503 | High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits
[13] | Stehlik J, Zajac D M, Underwood D L, Phung T, Blair J, Carnevale S, Klaus D, Keefe G A 2021 Phys. Rev. Lett. 127 080505 | Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits
[14] | Kandala A, Wei K X, Srinivasan S, Magesan E, Carnevale S, Keefe G A, Klaus D, Dial O, and McKay D C 2021 Phys. Rev. Lett. 127 130501 | Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered Suppression
[15] | Place A P M, Rodgers L V H, Mundada P et al. 2021 Nat. Commun. 12 1779 | New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
[16] | Wang C, Li X, Xu H et al. 2022 npj Quantum Inf. 8 3 | Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
[17] | Gordon R T, Murray C E, Kurter C et al. 2022 Appl. Phys. Lett. 120 074002 | Environmental radiation impact on lifetimes and quasiparticle tunneling rates of fixed-frequency transmon qubits
[18] | Zhao P, Ma T, Jin Y, and Yu H F 2022 Phys. Rev. A 105 062605 | Combating fluctuations in relaxation times of fixed-frequency transmon qubits with microwave-dressed states
[19] | Cohen-Tannoudji C, Dupont-Roc J, and Grynberg G 1998 Atom-Photon Interactions (New York: Wiley) |
[20] | Liu Y X, Sun C P, and Nori F 2006 Phys. Rev. A 74 052321 | Scalable superconducting qubit circuits using dressed states
[21] | Oelsner G, Hübner U, and Il'ichev E 2020 Phys. Rev. B 101 054511 | Controlling the energy gap of a tunable two-level system by ac drive
[22] | Mitchell B K, Naik R K, Morvan A et al. 2021 Phys. Rev. Lett. 127 200502 | Hardware-Efficient Microwave-Activated Tunable Coupling between Superconducting Qubits
[23] | Ni Z, Li S, Zhang L et al. 2022 Phys. Rev. Lett. 129 040502 | Scalable Method for Eliminating Residual Interaction between Superconducting Qubits
[24] | Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319 | Charge-insensitive qubit design derived from the Cooper pair box
[25] | Li X G, Zhang Y, Yang C, Li Z Y et al. 2021 Appl. Phys. Lett. 119 184003 | Vacuum-gap transmon qubits realized using flip-chip technology
[26] | Li X G, Xu H K, Wang J H, Tang L Z et al. 2023 arXiv:2301.12138 [quant-ph] | Mapping a topology-disorder phase diagram with a quantum simulator
[27] | Schneider A, Braumüller J, Guo L, Stehle P, Rotzinger H, Marthaler M, Ustinov A V, and Weides M 2018 Phys. Rev. A 97 062334 | Local sensing with the multilevel ac Stark effect
[28] | The output power of the microwave source giving the qubit frequency shift of 20 MHz is close to the maximum value of the instrument. |
[29] | Seedhouse A E, Hansen I, Laucht A, Yang C H, Dzurak A S, and Saraiva A 2021 Phys. Rev. B 104 235411 | Quantum computation protocol for dressed spins in a global field
[30] | Huang Z, Mundada P S, Gyenis A, Schuster D I, Houck A A, and Koch J 2021 Phys. Rev. Appl. 15 034065 | Engineering Dynamical Sweet Spots to Protect Qubits from Noise
[31] | Motzoi F, Gambetta J M, Rebentrost P, and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501 | Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits
[32] | Lisenfeld J, Bilmes A, and Ustinov A 2022 Preprint (Version 1) available at https://doi.org/10.21203/rs.3.rs-1815706/v1 | Enhancing the Coherence of Superconducting Quantum Bits with Electric Fields
[33] | Wei K X, Magesan E, Lauer I, Srinivasan S, Bogorin D F, Carnevale S, Keefe G A, Kim Y, Klaus D, Landers W, Sundaresan N, Wang C, Zhang E J, Steffen M, Dial O E, McKay D C, and Kandala A 2021 arXiv:2106.00675 [quant-ph] | Quantum crosstalk cancellation for fast entangling gates and improved multi-qubit performance
[34] | Zhao P, Wang R, Hu M J, Ma T, Xu P, Jin Y, and Yu H F 2023 Phys. Rev. Appl. 19 054050 | Baseband Control of Superconducting Qubits with Shared Microwave Drives
[35] | Magesan E, Gambetta J, and Emerson J M 2011 Phys. Rev. Lett. 106 180504 | Scalable and Robust Randomized Benchmarking of Quantum Processes
[36] | Magesan E, Gambetta J M, Johnson B R, Ryan C A, Chow J M, Merkel S T, Silva M P D, Keefe G A, Rothwell M B, Ohki T A, Ketchen M B, and Steffen M 2012 Phys. Rev. Lett. 109 080505 | Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking
[37] | Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, and Oliver W D 2018 Phys. Rev. Appl. 10 054062 | Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates
[38] | Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, and Wineland D J 2008 Phys. Rev. A 77 012307 | Randomized benchmarking of quantum gates
[39] | We mention that the Stark drive is always off during readout in the present work. However, it can also be applied during readout as demonstrated theoretically.[34] |