Year | QRNGs' principle | System | Type | Min-entropy (bits/bit) | |
---|---|---|---|---|---|
Statistical min-entropy | NIST SP 800-90B validated min-entropy |
||||
2023 | This work | Electronic | Discrete | 0.9944 | 0.9872 |
2022 | van der Waals heterojunction ($7\,{\rm K},~{10}^{-4}\mathrm{Torr}$) | Electronic | Discrete | – | 0.983 |
2021 | Tunnel diodes | Electronic | Discrete | 0.62 | – |
2021 | Amplified spontaneous emission | Photonic | Continuous | 0.77 | – |
2021 | Vacuum fluctuations | Photonic | Continuous | 0.60 | – |
2021 | Vacuum fluctuations | Photonic | Continuous | 0.77 | – |
2020 | Vacuum fluctuations | Photonic | Continuous | 0.73 | – |
2020 | Vacuum fluctuations | Photonic | Continuous | 0.80 | – |
2020 | Phase noise | Photonic | Continuous | 0.83 | – |
2020 | Phase noise | Photonic | Continuous | 0.86 | – |
2018 | Phase noise | Photonic | Continuous | 0.70 | – |
2015 | Phase noise | Photonic | Continuous | 0.88 | – |
2012 | Phase noise | Photonic | Continuous | 0.84 | – |
Chi-square tests: PASSED | ||||||
---|---|---|---|---|---|---|
Statistic | Sequential | Restart | ||||
Score | Degrees of freedom | $P$ value | Score | Degrees of freedom | $P$ value | |
Chi-square independence | 65450.794328 | 65280 | 0.317709 | 65348.118952 | 65280 | 0.424536 |
Chi-square goodness of Fit | 2191.175821 | 2295 | 0.938988 | 2289.951808 | 2295 | 0.525804 |
Length of longest repeated substring test: PASSED | ||||||
Sequential | Restart | |||||
P_col | Length of LRS | $\Pr(X\geqslant 1)$ | P_col | Length of LRS | $\Pr(X\geqslant 1)$ | |
0.003907 | 5 | 0.365768 | 0.003907 | 5 | 0.365770 | |
IID Permutation tests: PASSED | ||||||
Statistic | Sequential | Restart | ||||
$C_{{i,0}}$ | $C_{{i,1}}$ | $C_{{i,2}}$ | $C_{{i,0}}$ | $C_{{i,1}}$ | $C_{{i,2}}$ | |
Excursion test statistic | 19 | 0 | 6 | 6 | 0 | 30 |
Number of directional runs | 48 | 0 | 6 | 6 | 0 | 12 |
Length of directional runs | 3 | 6 | 0 | 2 | 6 | 0 |
Number of increases and decreases | 107 | 0 | 6 | 43 | 0 | 6 |
Number of runs based on the median | 6 | 0 | 7 | 5 | 1 | 13 |
Length of runs based on median | 3 | 3 | 3 | 3 | 3 | 25 |
Average collision test statistic | 42 | 0 | 6 | 6 | 0 | 98 |
Maximum collision test statistic | 6 | 0 | 8 | 6 | 0 | 8 |
Periodicity test statistic (lag = 1) | 6 | 0 | 49 | 11 | 1 | 5 |
Periodicity test statistic (lag = 2) | 29 | 0 | 6 | 7 | 1 | 5 |
Periodicity test statistic (lag = 8) | 5 | 1 | 543 | 6 | 0 | 29 |
Periodicity test statistic (lag = 16) | 6 | 0 | 50 | 6 | 0 | 66 |
Periodicity test statistic (lag = 32) | 19 | 1 | 5 | 96 | 0 | 6 |
Covariance test statistic (lag = 1) | 6 | 0 | 6 | 36 | 0 | 6 |
Covariance test statistic (lag = 2) | 61 | 0 | 6 | 69 | 0 | 6 |
Covariance test statistic (lag = 8) | 28 | 0 | 6 | 6 | 0 | 18 |
Covariance test statistic (lag = 16) | 15 | 0 | 6 | 6 | 0 | 6 |
Covariance test statistic (lag = 32) | 16 | 0 | 6 | 6 | 0 | 22 |
Compression test statistics | 6 | 0 | 23 | 6 | 0 | 32 |
Restart sanity check: PASSED | ||||||
Entropy estimate (bits/symbol) | ||||||
Sequential | Columns | Rows | ||||
7.897736 | 7.900547 | 7.900547 | ||||
Min-entropy $= 7.897736/8$ $= 0.9872$ bits/bit |
[1] | Herrero-Collantes M and Garcia-Escartin J C 2017 Rev. Mod. Phys. 89 015004 | Quantum random number generators
[2] | Bouda J, Pivoluska M, Plesch M, and Wilmott C 2012 Phys. Rev. A 86 062308 | Weak randomness seriously limits the security of quantum key distribution
[3] | Li H W, Yin Z Q, Wang S, Qian Y J, Chen W, Guo G C, and Han Z F 2015 Sci. Rep. 5 16200 | Randomness determines practical security of BB84 quantum key distribution
[4] | Bhattacharjee K and Das S 2022 WIREs: Comput. Mol. Sci. 45 100471 | A search for good pseudo-random number generators: Survey and empirical studies
[5] | Matsumoto M and Nishimura T 1998 ACM Trans. Model. Comput. Simul. 8 3 | Mersenne twister
[6] | Yoshiya K, Terashima Y, Kanno K, and Uchida A 2020 Opt. Express 28 3686 | Entropy evaluation of white chaos generated by optical heterodyne for certifying physical random number generators
[7] | Serrano R, Duran C, Hoang T T, Sarmiento M, Nguyen K D, Tsukamoto A, Suzaki K, and Pham C K 2021 IEEE Access 9 105748 | A Fully Digital True Random Number Generator With Entropy Source Based in Frequency Collapse
[8] | Monet F, Boisvert J S, and Kashyap R 2021 Sci. Rep. 11 13182 | A simple high-speed random number generator with minimal post-processing using a random Raman fiber laser
[9] | Jiang H, Belkin D, Savelév S E et al. 2017 Nat. Commun. 8 882 | A novel true random number generator based on a stochastic diffusive memristor
[10] | Kim G, In J H, Kim Y S, Rhee H, Park W, Song H, Park J, and Kim K M 2021 Nat. Commun. 12 2906 | Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor
[11] | Von Neumann J 2018 Mathematical Foundations of Quantum Mechanics (New Jersey: Princeton University Press) vol 53 |
[12] | Zhang Y B, Lo H P, Mink A, Ikuta T, Honjo T, Takesue H, and Munro W J 2021 Nat. Commun. 12 1056 | A simple low-latency real-time certifiable quantum random number generator
[13] | Jennewein T, Achleitner U, Weihs G, Weinfurter H, and Zeilinger A 2000 Rev. Sci. Instrum. 71 1675 | A fast and compact quantum random number generator
[14] | Stefanov A, Gisin N, Guinnard O, Guinnard L, and Zbinden H 2000 J. Mod. Opt. 47 595 | Optical quantum random number generator
[15] | Hoese M, Koch M K, Breuning F, Lettner N, Fehler K G, and Kubanek A 2022 Appl. Phys. Lett. 120 044001 | Single photon randomness originating from the symmetric dipole emission pattern of quantum emitters
[16] | Wei W and Guo H 2009 Opt. Lett. 34 1876 | Bias-free true random-number generator
[17] | Ren M, Wu E, Liang Y, Jian Y, Wu G, and Zeng H 2011 Phys. Rev. A 83 023820 | Quantum random-number generator based on a photon-number-resolving detector
[18] | Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, and Benson O 2011 Appl. Phys. Lett. 98 171105 | An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements
[19] | Guo H, Tang W, Liu Y, and Wei W 2010 Phys. Rev. E 81 051137 | Truly random number generation based on measurement of phase noise of a laser
[20] | Qi B, Chi Y M, Lo H K, and Qian L 2010 Opt. Lett. 35 312 | High-speed quantum random number generation by measuring phase noise of a single-mode laser
[21] | Xu F H, Qi B, Ma X F, Xu H, Zheng H X, and Lo H K 2012 Opt. Express 20 12366 | Ultrafast quantum random number generation based on quantum phase fluctuations
[22] | Nie Y Q, Huang L, Liu Y, Payne F, Zhang J, and Pan J W 2015 Rev. Sci. Instrum. 86 063105 | The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
[23] | Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, and Matthews J C F 2018 Opt. Express 26 19730 | Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip
[24] | Lei W, Xie Z, Li Y, Fang J, and Shen W 2020 Quantum Inf. Process. 19 405 | An 8.4 Gbps real-time quantum random number generator based on quantum phase fluctuation
[25] | Huang M, Chen Z, Zhang Y, and Guo H 2020 Appl. Sci. 10 2431 | A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure
[26] | Shen Y, Tian L, and Zou H 2010 Phys. Rev. A 81 063814 | Practical quantum random number generator based on measuring the shot noise of vacuum states
[27] | Huang M, Chen Z, Zhang Y, and Guo H 2020 Entropy 22 618 | A Gaussian-Distributed Quantum Random Number Generator Using Vacuum Shot Noise
[28] | Samsonov E O, Pervushin B E, Ivanova A E, Santev A A, Egorov V I, Kynev S M, and Gleim A V 2020 Quantum Inf. Process. 19 326 | Vacuum-based quantum random number generator using multi-mode coherent states
[29] | Bai B, Huang J Y, Qiao G R, Nie Y Q, Tang W J, Chu T, Zhang J, and Pan J W 2021 Appl. Phys. Lett. 118 264001 | 18.8 Gbps real-time quantum random number generator with a photonic integrated chip
[30] | Pervushin B E, Fadeev M A, Zinovev A V, Goncharov R K, Santev A A, Ivanova A E, Samsonov E O 2021 Nanosyst.: Phys. Chem. Math. 12 156 | Quantum random number generator using vacuum fluctuations
[31] | Marosits Á, Schranz Á, and Udvary E 2020 Infocommun. J. 12 12 | Amplified spontaneous emission based quantum random number generator
[32] | Guo Y, Cai Q, Li P et al. 2021 APL Photon. 6 066105 | 40 Gb/s quantum random number generation based on optically sampled amplified spontaneous emission
[33] | Zhou H H, Li J L, Zhang W X, and Long G L 2019 Phys. Rev. Appl. 11 034060 | Quantum Random-Number Generator Based on Tunneling Effects in a Diode
[34] | Aungskunsiri K, Amarit R, Wongpanya K, Jantarachote S, Yamwong W, Saiburee S, Chanhorm S, Intarapanich A, and Sumriddetchkajorn S 2021 Appl. Phys. Lett. 119 074002 | Random number generation from a quantum tunneling diode
[35] | Bernardo-Gavito R, Bagci I E, Roberts J et al. 2017 Sci. Rep. 7 17879 | Extracting random numbers from quantum tunnelling through a single diode
[36] | Abraham N, Watanabe K, Taniguchi T, and Majumdar K 2022 ACS Nano 16 5898 | A High-Quality Entropy Source Using van der Waals Heterojunction for True Random Number Generation
[37] | Shannon C E 1948 Bell Syst. Tech. J. 27 379 | A Mathematical Theory of Communication
[38] | Turan M S, Barker E, Kelsey J, McKay K A, Baish M L, and Boyle M 2018 NIST Special Publication 800-90B 102 | Recommendation for the entropy sources used for random bit generation
[39] | Schindler W and Killmann W 2003 Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications. In: Kaliski B S, Koc C K, and Paar C (eds) Cryptographic Hardware and Embedded Systems - CHES 2002. Lecture Notes in Computer Science (Berlin: Springer) vol 2523 p 431 | Lecture Notes in Computer Science
[40] | Wang J M, Xie T Y, Zhang H F, Yang D X, Xie C, and Wang J 2015 IEEE Photon. J. 7 7100808 | A Bias-Free Quantum Random Number Generation Using Photon Arrival Time Selectively
[41] | Zhou H, Li J L, Pan D, Zhang W, and Long G 2017 arXiv:1711.01752 [quant-ph] | Quantum random number generator based on quantum tunneling effect