[1] | Briegel H J, Dür W, Cirac J I, and Zoller P 1998 Phys. Rev. Lett. 81 5932 | Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication
[2] | Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33 | Quantum repeaters based on atomic ensembles and linear optics
[3] | Bernien H, Hensen B, Pfaff W et al. 2013 Nature 497 86 | Heralded entanglement between solid-state qubits separated by three metres
[4] | Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, and Monroe C 2007 Nature 449 68 | Entanglement of single-atom quantum bits at a distance
[5] | Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, and Kimble H J 2007 Science 316 1316 | Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks
[6] | Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, and Guo G C 2021 Nature 594 41 | Heralded entanglement distribution between two absorptive quantum memories
[7] | Hensen B, Bernien H, Dréau A E et al. 2015 Nature 526 682 | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
[8] | Yu Y, Ma F, Luo X Y et al. 2020 Nature 578 240 | Entanglement of two quantum memories via fibres over dozens of kilometres
[9] | Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, and Pan J W 2008 Nature 454 1098 | Experimental demonstration of a BDCZ quantum repeater node
[10] | Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W, and Weinfurter H 2012 Science 337 72 | Heralded Entanglement Between Widely Separated Atoms
[11] | Delteil A, Sun Z, Gao W B, Togan E, Faelt S, and Imamoğlu A 2016 Nat. Phys. 12 218 | Generation of heralded entanglement between distant hole spins
[12] | Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H, and Gisin N 2007 Phys. Rev. Lett. 98 190503 | Quantum Repeaters with Photon Pair Sources and Multimode Memories
[13] | Fekete J, Rieländer D, Cristiani M, and de Riedmatten H 2013 Phys. Rev. Lett. 110 220502 | Ultranarrow-Band Photon-Pair Source Compatible with Solid State Quantum Memories and Telecommunication Networks
[14] | Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, and de Riedmatten H 2021 Nature 594 37 | Telecom-heralded entanglement between multimode solid-state quantum memories
[15] | Rakonjac J V, Lago-Rivera D, Seri A, Mazzera M, Grandi S, and de Riedmatten H 2021 Phys. Rev. Lett. 127 210502 | Entanglement between a Telecom Photon and an On-Demand Multimode Solid-State Quantum Memory
[16] | Zaske S, Lenhard A, Keßler C A et al. 2012 Phys. Rev. Lett. 109 147404 | Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter
[17] | Ikuta R, Kusaka Y, Kitano T, Kato H, Yamamoto T, Koashi M, and Imoto N 2011 Nat. Commun. 2 537 | Wide-band quantum interface for visible-to-telecommunication wavelength conversion
[18] | Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, and Kennedy T A B 2010 Nat. Phys. 6 894 | A quantum memory with telecom-wavelength conversion
[19] | Böttger T, Thiel C, Cone R, and Sun Y 2009 Phys. Rev. B 79 115104 | Effects of magnetic field orientation on optical decoherence in
[20] | Rančić M, Hedges M P, Ahlefeldt R L, and Sellars M J 2018 Nat. Phys. 14 50 | Coherence time of over a second in a telecom-compatible quantum memory storage material
[21] | Huang J Y, Li P Y, Zhou Z Q, Li C F, and Guo G C 2022 Phys. Rev. B 105 245134 | Extending the spin coherence lifetimes of at subkelvin temperatures
[22] | Rakonjac J V, Chen Y H, Horvath S P, and Longdell J J 2020 Phys. Rev. B 101 184430 | Long spin coherence times in the ground state and in an optically excited state of at zero magnetic field
[23] | Lauritzen B, Minář J, de Riedmatten H, Afzelius M, Sangouard N, Simon C, and Gisin N 2010 Phys. Rev. Lett. 104 080502 | Telecommunication-Wavelength Solid-State Memory at the Single Photon Level
[24] | Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D, and Tittel W 2015 Nat. Photon. 9 83 | Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre
[25] | Askarani M F, Lutz T, Verma V B et al. 2019 Phys. Rev. Appl. 11 054056 | Storage and Reemission of Heralded Telecommunication-Wavelength Photons Using a Crystal Waveguide
[26] | Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong T, Sinclair N, and Faraon A 2019 Phys. Rev. Appl. 12 024062 | Nanophotonic Quantum Storage at Telecommunication Wavelength
[27] | Stuart J S, Hedges M, Ahlefeldt R, and Sellars M 2021 Phys. Rev. Res. 3 L032054 | Initialization protocol for efficient quantum memories using resolved hyperfine structure
[28] | Craiciu I, Lei M, Rochman J, Bartholomew J G, and Faraon A 2021 Optica 8 114 | Multifunctional on-chip storage at telecommunication wavelength for quantum networks
[29] | Liu D C, Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F, and Guo G C 2022 Phys. Rev. Lett. 129 210501 | On-Demand Storage of Photonic Qubits at Telecom Wavelengths
[30] | Dibos A M, Raha M, Phenicie C M, and Thompson J D 2018 Phys. Rev. Lett. 120 243601 | Atomic Source of Single Photons in the Telecom Band
[31] | Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M, and Thompson J D 2020 Nat. Commun. 11 1605 | Optical quantum nondemolition measurement of a single rare earth ion qubit
[32] | Chen S, Raha M, Phenicie C M, Ourari S, and Thompson J D 2020 Science 370 592 | Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit
[33] | Uysal M T, Raha M, Chen S, Phenicie C M, Ourari S, Wang M, Van de Walle C G, Dobrovitski V V, and Thompson J D 2023 PRX Quantum 4 010323 | Coherent Control of a Nuclear Spin via Interactions with a Rare-Earth Ion in the Solid State
[34] | Ourari S, Dusanowski, Horvath S P, Uysal M T, Phenicie C M, Stevenson P, Raha M, Chen S, Cava R J, de Leon N P, and Thompson J D 2023 arXiv:2301.03564 [quant-ph] | Indistinguishable telecom band photons from a single erbium ion in the solid state
[35] | Ulanowski A, Merkel B, and Reiserer A 2022 Sci. Adv. 8 eabo4538 | Spectral multiplexing of telecom emitters with stable transition frequency
[36] | Böttger T, Sun Y, Thiel C, and Cone R 2006 Phys. Rev. B 74 075107 | Spectroscopy and dynamics of at
[37] | Lee G H, Lee C H, Van Der Zande A M, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Hone J, and Kim P 2014 APL Mater. 2 092511 | Heterostructures based on inorganic and organic van der Waals systems
[38] | Black E D 2001 Am. J. Phys. 69 79 | An introduction to Pound–Drever–Hall laser frequency stabilization
[39] | Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 | Cavity-based quantum networks with single atoms and optical photons
[40] | Macfarlane R M 2007 J. Lumin. 125 156 | Optical Stark spectroscopy of solids
[41] | Horvath S P, Alqedra M K, Kinos A, Walther A, Dahlström J M, Kröll S, and Rippe L 2021 Phys. Rev. Res. 3 023099 | Noise-free on-demand atomic frequency comb quantum memory
[42] | Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, and Guo G C 2020 Phys. Rev. Lett. 125 260504 | On-Demand Quantum Storage of Photonic Qubits in an On-Chip Waveguide
[43] | de Santis L, Trusheim M E, Chen K C, and Englund D R 2021 Phys. Rev. Lett. 127 147402 | Investigation of the Stark Effect on a Centrosymmetric Quantum Emitter in Diamond
[44] | Tamarat P, Gaebel T, Rabeau J et al. 2006 Phys. Rev. Lett. 97 083002 | Stark Shift Control of Single Optical Centers in Diamond
[45] | Guillot-Noël O, Goldner P, Du Y L, Baldit E, Monnier P, and Bencheikh K 2006 Phys. Rev. B 74 214409 | Hyperfine interaction of ions in : An electron paramagnetic resonance spectroscopy study
[46] | Minář J, Lauritzen B, de Riedmatten H, Afzelius M, Simon C, and Gisin N 2009 New J. Phys. 11 113019 | Electric control of collective atomic coherence in an erbium-doped solid
[47] | Yu Y, Oser D, Prato G D, Urbinati E, Ávila J C, Zhang Y, Remy P, Marzban S, Gröblacher S, and Tittel W 2023 arXiv:2304.14685 [quant-ph] | Frequency tunable, cavity-enhanced single erbium quantum emitter in the telecom band