[1] | Sofue Y and Rubin V 2001 Annu. Rev. Astron. Astrophys. 39 137 | Rotation Curves of Spiral Galaxies
[2] | Massey R, Kitching T, and Richard J 2010 Rep. Prog. Phys. 73 086901 | The dark matter of gravitational lensing
[3] | Markevitch M, Gonzalez A H, Clowe D, Vikhlinin A, Forman W, Jones C, Murray S, and Tucker W 2004 Astrophys. J. 606 819 | Direct Constraints on the Dark Matter Self‐Interaction Cross Section from the Merging Galaxy Cluster 1E 0657−56
[4] | Gianfranco B 2010 Particle Dark Matter: Observations, Models and Searches (Cambridge: Cambridge University Press) | Particle Dark Matter
[5] | Tanabashi M, Hagiwara K, Hikasa K et al. (Particle Data Group Collaboration) 2018 Phys. Rev. D 98 030001 | Review of Particle Physics
[6] | Irastorza I G and Redondo J 2018 Prog. Part. Nucl. Phys. 102 89 | New experimental approaches in the search for axion-like particles
[7] | Hui L, Ostriker J P, Tremaine S, and Witten E 2017 Phys. Rev. D 95 043541 | Ultralight scalars as cosmological dark matter
[8] | Bovy J, Prieto C A, Beers T C et al. 2012 Astrophys. J. 759 131 | THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA
[9] | O'Hare C A J, McCabe C, Evans N W, Myeong G, and Belokurov V 2018 Phys. Rev. D 98 103006 | Dark matter hurricane: Measuring the S1 stream with dark matter detectors
[10] | Myeong G C, Evans N W, Belokurov V, Amorisco N C, and Koposov S E 2018 Mon. Not. R. Astron. Soc. 475 1537 | Halo substructure in the SDSS–Gaia catalogue: streams and clumps
[11] | Du N, Force N, Khatiwada R et al. (ADMX Collaboration) 2018 Phys. Rev. Lett. 120 151301 | Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment
[12] | Backes K M, Palken D A, Kenany S A et al. 2021 Nature 590 238 | A quantum enhanced search for dark matter axions
[13] | Kwon O, Lee D, Chung W et al. 2021 Phys. Rev. Lett. 126 191802 | First Results from an Axion Haloscope at CAPP around
[14] | Abel C, Ayres N J, Ban G et al. 2017 Phys. Rev. X 7 041034 | Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields
[15] | Terrano W A, Adelberger E G, Hagedorn C A, and Heckel B R 2019 Phys. Rev. Lett. 122 231301 | Constraints on Axionlike Dark Matter with Masses Down to
[16] | Smorra C, Stadnik Y, Blessing P et al. 2019 Nature 575 310 | Direct limits on the interaction of antiprotons with axion-like dark matter
[17] | Kennedy C J, Oelker E, Robinson J M, Bothwell T, Kedar D, Milner W R, Marti G E, Derevianko A, and Ye J 2020 Phys. Rev. Lett. 125 201302 | Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons
[18] | Arvanitaki A, Huang J W, and Van Tilburg K 2015 Phys. Rev. D 91 015015 | Searching for dilaton dark matter with atomic clocks
[19] | Vermeulen S M, Relton P, Grote H et al. 2021 Nature 600 424 | Direct limits for scalar field dark matter from a gravitational-wave detector
[20] | Carney D, Hook A, Liu Z, Taylor J M, and Zhao Y 2021 New J. Phys. 23 023041 | Ultralight dark matter detection with mechanical quantum sensors
[21] | Read J I 2014 J. Phys. G 41 063101 | The local dark matter density
[22] | Clark J B, Lecocq F, Simmonds R W, Aumentado J, and Teufel J D 2017 Nature 541 191 | Sideband cooling beyond the quantum backaction limit with squeezed light
[23] | Leng Y C, Li R, Kong X, Xie H, Zheng D, Yin P R, Xiong F, Wu T, Duan C K, Du Y W, Yin Z Q, Huang P, and Du J F 2021 Phys. Rev. Appl. 15 024061 | Mechanical Dissipation Below with a Cryogenic Diamagnetic Levitated Micro-Oscillator
[24] | Monteiro F, Li W, Afek G, Li C L, Mossman M, and Moore D C 2020 Phys. Rev. A 101 053835 | Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures
[25] | Acernese F, Antonucci F, Aoudia S et al. 2010 Astropart. Phys. 33 182 | Measurements of Superattenuator seismic isolation by Virgo interferometer
[26] | Acernese F, Agathos M, Agatsuma K et al. 2015 Class. Quantum Grav. 32 024001 | Advanced Virgo: a second-generation interferometric gravitational wave detector
[27] | Zheng D, Leng Y, Kong X, Li R, Wang Z, Luo X, Zhao J, Duan C K, Huang P, Du J, Carlesso M, and Bassi A 2020 Phys. Rev. Res. 2 013057 | Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator
[28] | Xiong F, Yin P, Wu T, Xie H, Li R, Leng Y, Li Y, Duan C, Kong X, Huang P, and Du J 2021 Phys. Rev. Appl. 16 L011003 | Lens-Free Optical Detection of Thermal Motion of a Submillimeter Sphere Diamagnetically Levitated in High Vacuum
[29] | Wagner T A, Schlamminger S, Gundlach J H, and Adelberger E G 2012 Class. Quantum Grav. 29 184002 | Torsion-balance tests of the weak equivalence principle
[30] | Schlamminger S, Choi K Y, Wagner T A, Gundlach J H, and Adelberger E G 2008 Phys. Rev. Lett. 100 041101 | Test of the Equivalence Principle Using a Rotating Torsion Balance
[31] | Arvanitaki A, Dimopoulos S, and Van Tilburg K 2016 Phys. Rev. Lett. 116 031102 | Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors
[32] | Hees A, Minazzoli O, Savalle E, Stadnik Y V, and Wolf P 2018 Phys. Rev. D 98 064051 | Violation of the equivalence principle from light scalar dark matter
[33] | Bergé J, Brax P, Métris G, Pernot-Borràs M, Touboul P, and Uzan J P 2018 Phys. Rev. Lett. 120 141101 | MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton