[1] | Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301 | Near-Field Thermal Transistor
[2] | Ordonez-Miranda J, Ezzahri Y, Tiburcio-Moreno J A et al. 2019 Phys. Rev. Lett. 123 025901 | Radiative Thermal Memristor
[3] | Polder D and Van Hove M 1971 Phys. Rev. B 4 3303 | Theory of Radiative Heat Transfer between Closely Spaced Bodies
[4] | Guha B, Otey C, Poitras C B et al. 2012 Nano Lett. 12 4546 | Near-Field Radiative Cooling of Nanostructures
[5] | Joulain K, Mulet J P, Marquier F et al. 2005 Surf. Sci. Rep. 57 59 | Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field
[6] | Liu X L, Wang L P, and Zhang Z M 2015 Nanoscale Microscale Thermophys. Eng. 19 98 | Near-Field Thermal Radiation: Recent Progress and Outlook
[7] | Cahill D G, Ford W K, Goodson K E et al. 2003 J. Appl. Phys. 93 793 | Nanoscale thermal transport
[8] | Ottens R S, Quetschke V, Wise S et al. 2011 Phys. Rev. Lett. 107 014301 | Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces
[9] | Hu L, Narayanaswamy A, Chen X et al. 2008 Appl. Phys. Lett. 92 133106 | Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law
[10] | Kim K, Song B, Fernández-Hurtado V et al. P 2015 Nature 528 387 | Radiative heat transfer in the extreme near field
[11] | Shen S, Narayanaswamy A, and Chen G 2009 Nano Lett. 9 2909 | Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps
[12] | Rousseau E, Siria A, Jourdan G et al. 2009 Nat. Photon. 3 514 | Radiative heat transfer at the nanoscale
[13] | Fiorino A, Zhu L, Thompson D et al. 2018 Nat. Nanotechnol. 13 806 | Nanogap near-field thermophotovoltaics
[14] | Bhatt G R, Zhao B, Roberts S et al. 2020 Nat. Commun. 11 2545 | Integrated near-field thermo-photovoltaics for heat recycling
[15] | Mittapally R, Lee B, Zhu L et al. 2021 Nat. Commun. 12 4364 | Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density
[16] | Inoue T, Koyama T, Kang D D et al. 2019 Nano Lett. 19 3948 | One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell
[17] | Fiorino A, Thompson D, Zhu L et al. 2018 ACS Nano 12 5774 | A Thermal Diode Based on Nanoscale Thermal Radiation
[18] | Landrieux S, Ben-Abdallah P, and Messina R 2022 Appl. Phys. Lett. 120 143502 | Graphene-based enhancement of near-field radiative-heat-transfer rectification
[19] | Xu G D, Sun J, Mao H M et al. 2018 J. Appl. Phys. 124 183104 | Surface plasmon-enhanced near-field thermal rectification in graphene-based structures
[20] | Song B, Fiorino A, Meyhofer E et al. 2015 AIP Adv. 5 053503 | Near-field radiative thermal transport: From theory to experiment
[21] | Greffet J J 2017 C. R. Phys. 18 24 | Revisiting thermal radiation in the near field
[22] | Francoeur M, Mengüç M P, and Vaillon R 2008 Appl. Phys. Lett. 93 043109 | Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films
[23] | Ben-Abdallah P, Joulain K, and Pryamikov A 2010 Appl. Phys. Lett. 96 143117 | Surface Bloch waves mediated heat transfer between two photonic crystals
[24] | Biehs S A, Ben-Abdallah P, Rosa F S S et al. 2011 Opt. Express 19 A1088 | Nanoscale heat flux between nanoporous materials
[25] | Rodriguez A W, Ilic O, Bermel P et al. 2011 Phys. Rev. Lett. 107 114302 | Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials
[26] | Dai J, Dyakov S A, and Yan M 2015 Phys. Rev. B 92 035419 | Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons
[27] | Guérout R, Lussange J, Rosa F S S et al. 2012 J. Phys.: Conf. Ser. 395 012154 | Enhanced radiative heat transfer between nanostructured gold plates
[28] | Fernández-Hurtado V, García-Vidal F J, Fan S et al. 2017 Phys. Rev. Lett. 118 203901 | Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces
[29] | Joulain K, Drevillon J, and Ben-Abdallah P 2010 Phys. Rev. B 81 165119 | Noncontact heat transfer between two metamaterials
[30] | Ikeda T, Ito K, and Iizuka H 2017 J. Appl. Phys. 121 013106 | Tunable quasi-monochromatic near-field radiative heat transfer in s and p polarizations by a hyperbolic metamaterial layer
[31] | Jin S, Lim M, Lee S et al. 2016 Opt. Express 24 A635 | Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap
[32] | Miller O D, Johnson S G, and Rodriguez A W 2014 Phys. Rev. Lett. 112 157402 | Effectiveness of Thin Films in Lieu of Hyperbolic Metamaterials in the Near Field
[33] | Biehs S A and Ben-Abdallah P 2017 Z. Naturforsch. A 72 115 | Near-Field Heat Transfer between Multilayer Hyperbolic Metamaterials
[34] | Biehs S A, Tschikin M, Messina R et al. 2013 Appl. Phys. Lett. 102 131106 | Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials
[35] | Iizuka H and Fan S 2018 Phys. Rev. Lett. 120 063901 | Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling
[36] | Gerber J A, Berweger S, O'Callahan B T et al. 2014 Phys. Rev. Lett. 113 055502 | Phase-Resolved Surface Plasmon Interferometry of Graphene
[37] | Zhang S B, Xu Y D, Chen H Y et al. 2020 Optica 7 687 | Photonic hyperinterfaces for light manipulations
[38] | Xu Y D, Gu C D, Hou B et al. 2013 Nat. Commun. 4 2561 | Broadband asymmetric waveguiding of light without polarization limitations
[39] | Herzig S H, Kaminer I, Genack A Z et al. 2016 Nat. Commun. 7 12927 | Interplay between evanescence and disorder in deep subwavelength photonic structures
[40] | Li S S, Xu P, and Xu Y D 2021 J. Opt. 23 115101 | Local photonic density of states in hyperbolic metasurfaces
[41] | Glytsis E N and Gaylord T K 1992 Appl. Opt. 31 4459 | High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces
[42] | Raguin D H and Morris G M 1993 Appl. Opt. 32 1154 | Antireflection structured surfaces for the infrared spectral region