Stacking | $d_\mathrm{L}$ (${\rm {Å}}$) | Symmetry | $E^\varGamma_\mathrm{g}$ (PBE) (eV) | $E^\varGamma_\mathrm{g}$ ($G_{0}W_{0}$) (eV) |
|
---|---|---|---|---|---|
R-type | R$_{\rm h}^{\rm h}$ | 4.48 | $m$ | 1.23 | 2.63 |
R$_{\rm h}^{\rm X}$ (R$_{\rm h}^{\rm M}$) | 3.60 | $m+T$ | 1.05 | 2.39 | |
H-type | H$_{\rm h}^{\rm h}$ | 3.68 | $\bar{1}$ | 1.07 | 2.42 |
H$_{\rm h}^{\rm M}$ | 4.56 | $\bar{1}+T$ | 1.26 | 2.66 | |
H$_{\rm h}^{\rm X}$ | 3.68 | $\bar{1}+T'$ | 1.07 | 2.41 |
$E_{\mathrm{X}_\mathrm{A}}$ (eV) | $E^{\rm b}_{\mathrm{X}_\mathrm{A}}$ (eV) | OS$_{\mathrm{X}_\mathrm{A}}$ ($10^{-3}{\rm Bohr}^{2}$) | $\tau_{_{\scriptstyle \mathrm{X}_\mathrm{A}}}$ (ps) |
||
---|---|---|---|---|---|
R-type | R$_{\rm h}^{\rm h}$ | 2.16 | 0.47 | 7.02 | 12.4 |
R$_{\rm h}^{\rm X}$ (R$_{\rm h}^{\rm M}$) | 1.95 | 0.44 | 0.12 | 835.4 | |
H-type | H$_{\rm h}^{\rm h}$ | 2.03 | 0.40 | 1.45 | 66.5 |
H$_{\rm h}^{\rm M}$ | 2.26 | 0.40 | 9.94 | 8.9 | |
H$_{\rm h}^{\rm X}$ | 2.02 | 0.40 | 12.60 | 8.2 |
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[3] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S 2012 Nat. Nanotechnol. 7 699 | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
[4] | Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805 | Atomically Thin : A New Direct-Gap Semiconductor
[5] | Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, and Wang F 2010 Nano Lett. 10 1271 | Emerging Photoluminescence in Monolayer MoS2
[6] | Ren Q D, Lai K, Chen J H, Yu X X, and Dai J Y 2023 Chin. Phys. B 32 027201 | A novel monoclinic phase and electrically tunable magnetism of van derWaals layered magnet CrTe2
[7] | Molle A 2016 ECS Trans. 75 163 | (Invited) Xenes: A New Emerging Two-Dimensional Materials Platform for Nanoelectronics
[8] | Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C, Zhang H, Farokhzad O C, and Kim J S 2019 Chem. Soc. Rev. 48 2891 | Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications
[9] | Huang Z Y, Liu H T, Hu R, Qiao H, Wang H D, Liu Y D, Qi X, and Zhang H 2020 Nano Today 35 100906 | Structures, properties and application of 2D monoelemental materials (Xenes) as graphene analogues under defect engineering
[10] | Cao Y, Fatemi V, Demir A et al. 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[11] | Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601 | Nature of the Correlated Insulator States in Twisted Bilayer Graphene
[12] | Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103 | Model for the metal-insulator transition in graphene superlattices and beyond
[13] | Shen C, Chu Y, Wu Q et al. 2020 Nat. Phys. 16 520 | Correlated states in twisted double bilayer graphene
[14] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[15] | Xu C K and Balents L 2018 Phys. Rev. Lett. 121 087001 | Topological Superconductivity in Twisted Multilayer Graphene
[16] | Liu C C, Zhang L D, Chen W Q, and Yang F 2018 Phys. Rev. Lett. 121 217001 | Chiral Spin Density Wave and Superconductivity in the Magic-Angle-Twisted Bilayer Graphene
[17] | Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, and He L 2020 Phys. Rev. B 102 121406 | Experimental evidence for orbital magnetic moments generated by moiré-scale current loops in twisted bilayer graphene
[18] | Liu J p, Ma Z, Gao J H, and Dai X 2019 Phys. Rev. X 9 031021 | Quantum Valley Hall Effect, Orbital Magnetism, and Anomalous Hall Effect in Twisted Multilayer Graphene Systems
[19] | Liu J P, Liu J W, and Dai X 2019 Phys. Rev. B 99 155415 | Pseudo Landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase
[20] | Lu C, Zhang Y Y, Zhang Y, Zhang M, Liu C C, Wang Y, Gu Z C, Chen W Q, and Yang F 2022 Phys. Rev. B 106 024518 | Chiral SO(4) spin-valley density wave and degenerate topological superconductivity in magic-angle twisted bilayer graphene
[21] | Zhang N, Surrente A, Baranowski M, Maude D K, Gant P, Castellanos-Gomez A, and Plochocka P 2018 Nano Lett. 18 7651 | Moiré Intralayer Excitons in a MoSe2 /MoS2 Heterostructure
[22] | Tran K, Moody G, Wu F et al. 2019 Nature 567 71 | Evidence for moiré excitons in van der Waals heterostructures
[23] | Jin C H, Regan E C, Yan A M et al. 2019 Nature 567 76 | Observation of moiré excitons in WSe2/WS2 heterostructure superlattices
[24] | Naik M H, Regan E C, Zhang Z et al. 2022 Nature 609 52 | Intralayer charge-transfer moiré excitons in van der Waals superlattices
[25] | Wu F C, Lovorn T, and MacDonald A H 2017 Phys. Rev. Lett. 118 147401 | Topological Exciton Bands in Moiré Heterojunctions
[26] | Kiemle J, Sigger F, Lorke M, Miller B, Watanabe K, Taniguchi T, Holleitner A, and Wurstbauer U 2020 Phys. Rev. B 101 121404 | Control of the orbital character of indirect excitons in heterobilayers
[27] | Wang Z F, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, and Mak K F 2019 Nature 574 76 | Evidence of high-temperature exciton condensation in two-dimensional atomic double layers
[28] | Guo H L, Zhang X, and Lu G 2022 Sci. Adv. 8 eabp9757 | Tuning moiré excitons in Janus heterobilayers for high-temperature Bose-Einstein condensation
[29] | Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, and Xu X 2019 Nature 567 66 | Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers
[30] | Jin C H, Regan E C, Wang D Q et al. 2019 Nat. Phys. 15 1140 | Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons
[31] | Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Scerri E, White D, Watanabe K, Taniguchi T, Bonato C, and Gerardot B D 2020 Nat. Mater. 19 630 | Spin–layer locking of interlayer excitons trapped in moiré potentials
[32] | Tang Y H, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, and Shan J 2021 Nat. Nanotechnol. 16 52 | Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect
[33] | Lai K, Ju S L, Zhu H E et al. 2022 Commun. Phys. 5 143 | Strong bulk-surface interaction dominated in-plane anisotropy of electronic structure in GaTe
[34] | Song C Y, Fan F R, Xuan N N, Huang S Y, Zhang G W, Wang C, Sun Z Z, Wu H, and Yan H G 2018 ACS Appl. Mater. & Interfaces 10 3994 | Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain
[35] | Segura A, Pomer F, Cantarero A, Krause W, and Chevy A 1984 Phys. Rev. B 29 5708 | Electron scattering mechanisms in -type indium selenide
[36] | Poncé S, Li W, Reichardt S, and Giustino F 2020 Rep. Prog. Phys. 83 036501 | First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
[37] | Bandurin D A, Tyurnina A V, Yu G L et al. 2017 Nat. Nanotechnol. 12 223 | High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe
[38] | Lu X B, Li X Q, and Yang L 2019 Phys. Rev. B 100 155416 | Modulated interlayer exciton properties in a two-dimensional moiré crystal
[39] | Yu H Y, Liu G B, and Yao W 2018 2D Mater. 5 035021 | Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers
[40] | Yu H Y, Liu G B, Tang J, Xu X, and Yao W 2017 Sci. Adv. 3 e1701696 | Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices
[41] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | Inhomogeneous Electron Gas
[42] | Giannozzi P, Baroni S, Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[43] | Giannozzi P, Andreussi O, Brumme T et al. 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[44] | Hamann D R 2013 Phys. Rev. B 88 085117 | Optimized norm-conserving Vanderbilt pseudopotentials
[45] | Scherpelz P, Govoni M, Hamada I, and Galli G 2016 J. Chem. Theory Comput. 12 3523 | Implementation and Validation of Fully Relativistic GW Calculations: Spin–Orbit Coupling in Molecules, Nanocrystals, and Solids
[46] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[47] | Becke A D 1988 Phys. Rev. A 38 3098 | Density-functional exchange-energy approximation with correct asymptotic behavior
[48] | Dion M, Rydberg H, Schröder E, Langreth D C, and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 | Van der Waals Density Functional for General Geometries
[49] | Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P, and Langreth D C 2007 Phys. Rev. B 76 125112 | Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond
[50] | Langreth D C, Lundqvist B I, Chakarova-Käck S D, Cooper V R, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L, Li S, Moses P G, Murray E, Puzder A, Rydberg H, Schröder E, and Thonhauser T 2009 J. Phys.: Condens. Matter 21 084203 | A density functional for sparse matter
[51] | Klimeš J, Bowler D R, and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 | Chemical accuracy for the van der Waals density functional
[52] | Thonhauser T, Zuluaga S, Arter C A, Berland K, Schröder E, and Hyldgaard P 2015 Phys. Rev. Lett. 115 136402 | Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks
[53] | Berland K, Cooper V R, Lee K, Schröder E, Thonhauser T, Hyldgaard P, and Lundqvist B I 2015 Rep. Prog. Phys. 78 066501 | van der Waals forces in density functional theory: a review of the vdW-DF method
[54] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[55] | Hedin L 1965 Phys. Rev. 139 A796 | New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem
[56] | Aryasetiawan F and Gunnarsson O 1998 Rep. Prog. Phys. 61 237 | The GW method
[57] | Hanke W and Sham L J 1979 Phys. Rev. Lett. 43 387 | Many-Particle Effects in the Optical Excitations of a Semiconductor
[58] | Marini A, Hogan C, Grüning M, and Varsano D 2009 Comput. Phys. Commun. 180 1392 | yambo: An ab initio tool for excited state calculations
[59] | Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo M O, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, and Marini A 2019 J. Phys.: Condens. Matter 31 325902 | Many-body perturbation theory calculations using the yambo code
[60] | Ismail-Beigi S 2006 Phys. Rev. B 73 233103 | Truncation of periodic image interactions for confined systems
[61] | Rozzi C A, Varsano D, Marini A, Gross E K U, and Rubio A 2006 Phys. Rev. B 73 205119 | Exact Coulomb cutoff technique for supercell calculations
[62] | Bennett M and Inkson J C 1977 J. Phys. C 10 987 | Exchange and correlation potential in silicon
[63] | Inkson J C and Bennett M 1978 J. Phys. C 11 2017 | Exchange and correlation potential in silicon. II
[64] | Guo H L, Zhang X, and Lu G 2021 Proc. Natl. Acad. Sci. USA 118 e2105468118 | Moiré excitons in defective van der Waals heterostructures
[65] | Chen H Y, Jhalani V A, Palummo M, and Bernardi M 2019 Phys. Rev. B 100 075135 | Ab initio calculations of exciton radiative lifetimes in bulk crystals, nanostructures, and molecules