[1] | Maekawa S (ed) 2006 Concepts in Spin Electronics (Oxford: Oxford University Press) | Concepts in Spin Electronics
[2] | Maekawa S, Valenzuela S O, Saitoh E, and Kimura T (eds) 2017 Spin Current (Oxford: Oxford University Press) | Oxford Scholarship Online
[3] | Li X X and Yang J L 2016 Natl. Sci. Rev. 3 365 | First-principles design of spintronics materials
[4] | Jin W, Zhang G, Wu H, Yang L, Zhang W, and Chang H 2023 Chin. Phys. Lett. 40 057301 | Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics
[5] | Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, and Treger D M 2001 Science 294 1488 | Spintronics: A Spin-Based Electronics Vision for the Future
[6] | Dietl T 2002 Semicond. Sci. Technol. 17 377 | Ferromagnetic semiconductors
[7] | Ohno H 1998 Science 281 951 | Making Nonmagnetic Semiconductors Ferromagnetic
[8] | Munekata H, Ohno H, von Molnar S, Segmüller A, Chang L L, and Esaki L 1989 Phys. Rev. Lett. 63 1849 | Diluted magnetic III-V semiconductors
[9] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501 | Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions
[10] | Furdyna J K 1988 J. Appl. Phys. 64 R29 | Diluted magnetic semiconductors
[11] | Satoh I and Kobayashi T 2003 Appl. Surf. Sci. 216 603 | Magnetic and optical properties of novel magnetic semiconductor Cr-doped ZnO and its application to all oxide p–i–n diode
[12] | Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, and von Molnár S 2011 Nano Lett. 11 2584 | Enhancing the Curie Temperature of Ferromagnetic Semiconductor (Ga,Mn)As to 200 K via Nanostructure Engineering
[13] | Burch K S, Mandrus D, and Park J G 2018 Nature 563 47 | Magnetism in two-dimensional van der Waals materials
[14] | Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[15] | Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[16] | Kennedy D and Norman C 2005 Science 309 75 | What Don't We Know?
[17] | Zeng Y Z and Huang M C 2004 Chin. Phys. Lett. 21 1632 | Electronic and Magnetic Properties of 3 d Transition-Metal-Doped III–V Magnetic Semiconductor
[18] | Peng L, Zhang H W, Wen Q Y, Song Y Q, Su H, and Xiao J Q 2008 Chin. Phys. Lett. 25 1438 | Origin of Room-Temperature Ferromagnetism for Cobalt-Doped ZnO Diluted Magnetic Semiconductor
[19] | Tao Z K, Zhang R, Cui X G, Xiu X Q, Zhang G Y, Xie Z L, Gu S L, Shi Y, and Zheng Y D 2008 Chin. Phys. Lett. 25 1476 | Optical and Magnetic Properties of Fe-Doped GaN Diluted Magnetic Semiconductors Prepared by MOCVD Method
[20] | Liu J 2014 Natl. Sci. Rev. 1 3 | Successful Mn ions spin polarization in magnetic semiconductor at room temperature in a Co2FeAl/(Ga,Mn)As bilayer
[21] | Mašek J, Kudrnovský J, Máca F, Gallagher B L, Campion R P, Gregory D H, and Jungwirth T 2007 Phys. Rev. Lett. 98 067202 | Dilute Moment -Type Ferromagnetic Semiconductor Li(Zn,Mn)As
[22] | Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, and Uemura Y J 2011 Nat. Commun. 2 422 | Li(Zn,Mn)As as a new generation ferromagnet based on a I–II–V semiconductor
[23] | Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, and Jin C Q 2013 Phys. Rev. B 88 081203 | Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping
[24] | Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, and Jin C Q 2013 Nat. Commun. 4 1442 | New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors
[25] | Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J, and Jin C 2014 Chin. Sci. Bull. 59 2524 | Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor
[26] | Tu N T, Hai P N, Anh L D, and Tanaka M 2016 Appl. Phys. Lett. 108 192401 | High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb
[27] | Goel S, Anh L D, Ohya S, and Tanaka M 2019 Phys. Rev. B 99 014431 | Ferromagnetic resonance and control of magnetic anisotropy by epitaxial strain in the ferromagnetic semiconductor at room temperature
[28] | Kudrin A V, Danilov Y A, Lesnikov V P, Dorokhin M V, Vikhrova O V, Pavlov D A, Usov Y V, Antonov I N, Kriukov R N, Alaferdov A V, and Sobolev N A 2017 J. Appl. Phys. 122 183901 | High-temperature intrinsic ferromagnetism in the (In,Fe)Sb semiconductor
[29] | Tu N T, Hai P N, Anh L D, and Tanaka M 2019 Appl. Phys. Express 12 103004 | Heavily Fe-doped ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature and large magnetic anisotropy
[30] | Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H, Deng Z, Jin C Q, Uemura Y J, and Ning F 2019 Phys. Rev. B 99 155201 | : A diluted ferromagnetic semiconductor with -type carriers and isostructural to 122 iron-based superconductors
[31] | Abe E, Matsukura F, Yasuda H, Ohno Y, and Ohno H 2000 Physica E 7 981 | Molecular beam epitaxy of III–V diluted magnetic semiconductor (Ga,Mn)Sb
[32] | Ganesan K and Bhat H L 2008 J. Appl. Phys. 103 043701 | Growth, magnetotransport, and magnetic properties of ferromagnetic (In,Mn)Sb crystals
[33] | Hai P N, Anh L D, Mohan S, Tamegai T, Kodzuka M, Ohkubo T, Hono K, and Tanaka M 2012 Appl. Phys. Lett. 101 182403 | Growth and characterization of n-type electron-induced ferromagnetic semiconductor (In,Fe)As
[34] | Schallenberg T and Munekata H 2006 Appl. Phys. Lett. 89 042507 | Preparation of ferromagnetic (In,Mn)As with a high Curie temperature of 90K
[35] | Pham Y T H, Liu M, Jimenez V O, Yu Z, Kalappattil V, Zhang F, Wang K, Williams T, Terrones M, and Phan M H 2020 Adv. Mater. 32 2003607 | Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium‐Doped Tungsten Diselenide Monolayers at Room Temperature
[36] | Zhang F, Zheng B, Sebastian A, Olson D H, Liu M, Fujisawa K, Pham Y T H, Jimenez V O, Kalappattil V, Miao L, Zhang T, Pendurthi R, Lei Y, Elías A L, Wang Y, Alem N, Hopkins P E, Das S, Crespi V H, Phan M H, and Terrones M 2020 Adv. Sci. 7 2001174 | Monolayer Vanadium‐Doped Tungsten Disulfide: A Room‐Temperature Dilute Magnetic Semiconductor
[37] | Zhang G J, Wu H, Zhang L, Zhang S F, Yang L, Gao P F, Wen X, Jin W, Guo F, Xie Y M, Li H D, Tao B R, Zhang W F, and Chang H X 2022 Adv. Sci. 9 2103173 | Highly‐Tunable Intrinsic Room‐Temperature Ferromagnetism in 2D van der Waals Semiconductor Cr x Ga1− x Te
[38] | Yang L, Wu H, Zhang L, Zhang G, Li H, Jin W, Zhang W, and Chang H 2021 ACS Appl. Mater. & Interfaces 13 31880 | Tunable and Robust Near-Room-Temperature Intrinsic Ferromagnetism of a van der Waals Layered Cr-Doped 2H-MoTe2 Semiconductor with an Out-of-Plane Anisotropy
[39] | Gu B and Maekawa S 2016 Phys. Rev. B 94 155202 | Diluted magnetic semiconductors with narrow band gaps
[40] | You J Y, Gu B, Maekawa S, and Su G 2020 Phys. Rev. B 102 094432 | Microscopic mechanism of high-temperature ferromagnetism in Fe, Mn, and Cr-doped InSb, InAs, and GaSb magnetic semiconductors
[41] | Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, and Jin C Q 2019 Sci. Rep. 9 7490 | Li(Cd,Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & charge doping
[42] | You J Y 2023 iScience 26 106312 | Strain induced metal-semiconductor transition in two-dimensional topological half metals
[43] | Guinea F, Katsnelson M I, and Geim A K 2010 Nat. Phys. 6 30 | Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
[44] | Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, and Bolotin K I 2013 Nano Lett. 13 3626 | Bandgap Engineering of Strained Monolayer and Bilayer MoS2
[45] | Dong X J, You J Y, Gu B, and Su G 2019 Phys. Rev. Appl. 12 014020 | Strain-Induced Room-Temperature Ferromagnetic Semiconductors with Large Anomalous Hall Conductivity in Two-Dimensional
[46] | Dong X J, You J Y, Zhang Z, Gu B, and Su G 2020 Phys. Rev. B 102 144443 | Great enhancement of Curie temperature and magnetic anisotropy in two-dimensional van der Waals magnetic semiconductor heterostructures
[47] | Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 | Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models
[48] | Xu C S, Feng J S, Xiang H J, and Bellaiche L 2018 npj Comput. Mater. 4 57 | Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers
[49] | Zhang Z, You J Y, Gu B, and Su G 2021 Phys. Rev. B 104 174433 | Emergent magnetic states due to stacking and strain in the van der Waals magnetic trilayer
[50] | Han X C, You J Y, Wu S, Li R, Feng Y P, Loh K P, and Zhao X X 2023 J. Am. Chem. Soc. 145 3624 | Atomically Unveiling an Atlas of Polytypes in Transition-Metal Trihalides
[51] | Suzuki Y, Katayama T, Yoshida S, Tanaka K, and Sato K 1992 Phys. Rev. Lett. 68 3355 | New magneto-optical transition in ultrathin Fe(100) films
[52] | Bennett W R, Schwarzacher W, and Egelhoff W F 1990 Phys. Rev. Lett. 65 3169 | Concurrent enhancement of Kerr rotation and antiferromagnetic coupling in epitaxial Fe/Cu/Fe structures
[53] | Weller D, Brändle H, and Chappert C 1993 J. Magn. Magn. Mater. 121 461 | Relationship between Kerr effect and perpendicular magnetic anisotropy in Co1−xPtx and Co1−xPdx alloys
[54] | You J Y, Zhang Z, Dong X J, Gu B, and Su G 2020 Phys. Rev. Res. 2 013002 | Two-dimensional magnetic semiconductors with room Curie temperatures
[55] | You J Y, Su G, and Feng Y P 2023 Natl. Sci. Rev. nwad114 | A versatile model with three-dimensional triangular lattice for unconventional transport and various topological effects
[56] | Haldane F D M 1988 Phys. Rev. Lett. 61 2015 | Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
[57] | Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2008 Phys. Rev. Lett. 101 146802 | Quantum Anomalous Hall Effect in Quantum Wells
[58] | He K, Wang Y, and Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329 | Topological Materials: Quantum Anomalous Hall System
[59] | Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, and Wang J 2020 Natl. Sci. Rev. 7 1280 | High-Chern-number and high-temperature quantum Hall effect without Landau levels
[60] | Wu J S, Liu J, and Liu X J 2014 Phys. Rev. Lett. 113 136403 | Topological Spin Texture in a Quantum Anomalous Hall Insulator
[61] | Chang C Z, Zhang J, Liu M, Zhang Z, Feng X, Li K, Wang L L, Chen X, Dai X, Fang Z, Qi X L, Zhang S C, Wang Y, He K, Ma X C, and Xue Q K 2013 Adv. Mater. 25 1065 | Thin Films of Magnetically Doped Topological Insulator with Carrier-Independent Long-Range Ferromagnetic Order
[62] | Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science 340 167 | Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
[63] | Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, and Moodera J S 2015 Nat. Mater. 14 473 | High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
[64] | Ou Y B, Liu C, Jiang G Y, Feng Y, Zhao D Y, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C, and Xue Q K 2017 Adv. Mater. 30 1703062 | Enhancing the Quantum Anomalous Hall Effect by Magnetic Codoping in a Topological Insulator
[65] | Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, and Tokura Y 2015 Appl. Phys. Lett. 107 182401 | Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect
[66] | Liu X, Hsu H C, and Liu C X 2013 Phys. Rev. Lett. 111 086802 | In-Plane Magnetization-Induced Quantum Anomalous Hall Effect
[67] | Huang C, Zhou J, Wu H, Deng K, Jena P, and Kan E 2017 Phys. Rev. B 95 045113 | Quantum anomalous Hall effect in ferromagnetic transition metal halides
[68] | You J Y, Gu B, and Su G 2021 Natl. Sci. Rev. 9 nwab114 | The p -orbital magnetic topological states on a square lattice
[69] | He J J, Li X, Lyu P B, and Nachtigall P 2017 Nanoscale 9 2246 | Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer
[70] | Sun Q L and Kioussis N 2018 Phys. Rev. B 97 094408 | Prediction of manganese trihalides as two-dimensional Dirac half-metals
[71] | Zhang Z, You J Y, Ma X Y, Gu B, and Su G 2021 Phys. Rev. B 103 014410 | Kagome quantum anomalous Hall effect with high Chern number and large band gap
[72] | You J Y and Feng Y P 2023 Mater. Today Chem. 30 101566 | A two-dimensional kagome magnet with tunable topological phases
[73] | Zhang H B, Lazo C, Blügel S, Heinze S, and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802 | Electrically Tunable Quantum Anomalous Hall Effect in Graphene Decorated by Transition-Metal Adatoms
[74] | Qiao Z H, Ren W, Chen H, Bellaiche L, Zhang Z Y, MacDonald A H, and Niu Q 2014 Phys. Rev. Lett. 112 116404 | Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator
[75] | You J Y, Chen C, Zhang Z, Sheng X L, Yang S A, and Su G 2019 Phys. Rev. B 100 064408 | Two-dimensional Weyl half-semimetal and tunable quantum anomalous Hall effect
[76] | Wu S C, Shan G, and Yan B 2014 Phys. Rev. Lett. 113 256401 | Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials
[77] | You J Y, Zhang Z, Gu B, and Su G 2019 Phys. Rev. Appl. 12 024063 | Two-Dimensional Room-Temperature Ferromagnetic Semiconductors with Quantum Anomalous Hall Effect
[78] | Wolff U 1989 Phys. Rev. Lett. 62 361 | Collective Monte Carlo Updating for Spin Systems
[79] | Hatsugai Y 1993 Phys. Rev. Lett. 71 3697 | Chern number and edge states in the integer quantum Hall effect
[80] | Liu Z, You J Y, Gu B, Maekawa S, and Su G 2023 Phys. Rev. B 107 104407 | Enhanced spin-orbit coupling and orbital moment in ferromagnets by electron correlations
[81] | O'Neill A, Rahman S, Zhang Z, Schoenherr P, Yildirim T, Gu B, Su G, Lu Y, and Seidel J 2023 ACS Nano 17 735 | Enhanced Room Temperature Ferromagnetism in Highly Strained 2D Semiconductor Cr2 Ge2 Te6
[82] | Fernández-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, and Cowburn R P 2019 Nat. Mater. 18 679 | Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets
[83] | You J Y, Dong X J, Gu B, and Su G 2021 Phys. Rev. B 103 104403 | Electric field induced topological phase transition and large enhancements of spin-orbit coupling and Curie temperature in two-dimensional ferromagnetic semiconductors
[84] | Sahoo S, Kontos T, Furer J, Hoffmann C, Gräber M, Cottet A, and Schönenberger C 2005 Nat. Phys. 1 99 | Electric field control of spin transport
[85] | Laukhin V, Skumryev V, Martí X, Hrabovsky D, Sánchez F, García-Cuenca M V, Ferrater C, Varela M, Lüders U, Bobo J F, and Fontcuberta J 2006 Phys. Rev. Lett. 97 227201 | Electric-Field Control of Exchange Bias in Multiferroic Epitaxial Heterostructures
[86] | Ohta T, Bostwick A, Seyller T, Horn K, and Rotenberg E 2006 Science 313 951 | Controlling the Electronic Structure of Bilayer Graphene
[87] | Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F 2009 Nature 459 820 | Direct observation of a widely tunable bandgap in bilayer graphene
[88] | You J Y, Gu B, and Su G 2019 Sci. Rep. 9 20116 | Flat Band and Hole-induced Ferromagnetism in a Novel Carbon Monolayer
[89] | Xiao X B, Ye Q, Liu Z F, Wu Q P, Li Y, and Ai G P 2019 Nanoscale Res. Lett. 14 322 | Electric Field Controlled Indirect-Direct-Indirect Band Gap Transition in Monolayer InSe
[90] | Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, and Xu X 2016 Nat. Rev. Mater. 1 16055 | Valleytronics in 2D materials
[91] | Liu F C, Zhou J D, Zhu C, and Liu Z 2016 Adv. Funct. Mater. 27 1602404 | Electric Field Effect in Two-Dimensional Transition Metal Dichalcogenides
[92] | Lyu H Y, Zhang Z, You J Y, Yan Q B, and Su G 2022 J. Phys. Chem. Lett. 13 11405 | Two-Dimensional Intercalating Multiferroics with Strong Magnetoelectric Coupling
[93] | Xing W Y, Chen Y Y, Odenthal P M, Zhang X, Yuan W, Su T, Song Q, Wang T Y, Zhong J G, Jia S, Xie X C, Li Y, and Han W 2017 2D Mater. 4 024009 | Electric field effect in multilayer Cr2 Ge2 Te6 : a ferromagnetic 2D material
[94] | Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544 | Electrical control of 2D magnetism in bilayer CrI3
[95] | Jiang S W, Shan J, and Mak K F 2018 Nat. Mater. 17 406 | Electric-field switching of two-dimensional van der Waals magnets
[96] | Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, and Zhang Z 2018 Nat. Nanotechnol. 13 554 | Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor
[97] | Song T C, Tu M W Y, Carnahan C, Cai X H, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X D 2019 Nano Lett. 19 915 | Voltage Control of a van der Waals Spin-Filter Magnetic Tunnel Junction
[98] | Zhang Z, You J Y, Gu B, and Su G 2020 J. Phys. Chem. C 124 19219 | Antiferromagnetic and Electric Polarized States in Two-Dimensional Janus Semiconductor Fe2 Cl3 I3
[99] | Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, and Xu Y 2019 Sci. Adv. 5 eaaw5685 | Intrinsic magnetic topological insulators in van der Waals layered MnBi2 Te4 -family materials