[1] | Chen J, Hu L, Deng J, and Xing X 2015 Chem. Soc. Rev. 44 3522 | Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
[2] | Takenaka K 2012 Sci. Technol. Adv. Mater. 13 13001 | Negative thermal expansion materials: technological key for control of thermal expansion
[3] | Venkataraman G, Feldkamp L A, and Sahni V C 1975 Dynamics of Perfect Crystals (Cambridge: MIT Press) |
[4] | Chen J et al. 2013 Sci. Rep. 3 2458 | Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range
[5] | Mary T A, Evans J S O, Vogt T, and Sleight A W 1996 Science 272 90 | Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2 O8
[6] | Greve B K et al. 2010 J. Am. Chem. Soc. 132 15496 | Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3
[7] | Goodwin A L et al. 2008 Science 319 794 | Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3 [Co(CN)6 ]
[8] | Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902 | Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
[9] | van Schilfgaarde M, Abrikosov I A, and Johansson B 1999 Nature 400 46 | Origin of the Invar effect in iron–nickel alloys
[10] | Yu C Y et al. 2021 Nat. Commun. 12 4701 | Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite
[11] | Takenaka K, Okamoto Y, Shinoda T, Katayama N, and Sakai Y 2017 Nat. Commun. 8 14102 | Colossal negative thermal expansion in reduced layered ruthenate
[12] | Long Y W et al. 2009 Nature 458 60 | Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite
[13] | Azuma M et al. 2011 Nat. Commun. 2 347 | Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
[14] | Asai D et al. 2019 Appl. Phys. Lett. 114 141902 | Valence fluctuations and giant isotropic negative thermal expansion in Sm 1– x R x S ( R = Y, La, Ce, Pr, Nd)
[15] | Chen J et al. 2011 J. Am. Chem. Soc. 133 11114 | The Role of Spontaneous Polarization in the Negative Thermal Expansion of Tetragonal PbTiO3 -Based Compounds
[16] | Pan Z et al. 2017 J. Am. Chem. Soc. 139 14865 | Colossal Volume Contraction in Strong Polar Perovskites of Pb(Ti,V)O3
[17] | Ren Z H et al. 2018 Nat. Commun. 9 1638 | Mesopores induced zero thermal expansion in single-crystal ferroelectrics
[18] | Kou R H et al. 2016 J. Mater. Sci. 51 1896 | Magnetic field-induced changes of lattice parameters and thermal expansion behavior of the CoMnSi compound
[19] | Song Y Z et al. 2020 Chem. Mater. 32 7535 | Magnetic-Field-Induced Strong Negative Thermal Expansion in La(Fe,Al)13
[20] | Long Y W et al. 2008 J. Appl. Phys. 103 93542 | High-pressure Raman scattering study on zircon- to scheelite-type structural phase transitions of RCrO4
[21] | Midya A, Khan N, Bhoi D, and Mandal P 2013 Appl. Phys. Lett. 103 92402 | 3d-4f spin interaction induced giant magnetocaloric effect in zircon-type DyCrO4 and HoCrO4 compounds
[22] | Long Y W et al. 2010 J. Magn. Magn. Mater. 322 1912 | Low-temperature neutron diffraction study of the crystal and magnetic phase transitions in DyCrO4
[23] | Smirnov M B, Mirgorodsky A P, Kazimirov V Y, and Guinebretière R 2008 Phys. Rev. B 78 94109 | Bond-switching mechanism for the zircon-scheelite phase transition
[24] | Gehring G A and Gehring K A 1975 Rep. Prog. Phys. 38 1 | Co-operative Jahn-Teller effects
[25] | Long Y W, Liu Q Q, Lv Y X, Yu R C, and Jin C Q 2011 Phys. Rev. B 83 024416 | Various - spin interactions and field-induced metamagnetism in the Cr system DyCrO
[26] | Shen X D et al. 2019 NPG Asia Mater. 11 50 | Large linear magnetoelectric effect and field-induced ferromagnetism and ferroelectricity in DyCrO4
[27] | Kobayashi M and Mochizuki M 2019 Phys. Rev. Mater. 3 024407 | Theory of magnetism-driven negative thermal expansion in inverse perovskite antiferromagnets
[28] | Xing Q, Du Y, Mcqueeney R J, and Lograsso T A 2008 Acta Mater. 56 4536 | Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior
[29] | Ibarra M R and Moral A D 1990 J. Magn. Magn. Mater. 83 121 | Magnetostriction and magnetic anisotropy in rare earth intermetallic compounds
[30] | Sierks C et al. 1999 J. Magn. Magn. Mater. 192 473 | Magnetostriction and magnetization measurements on a DyNi2B2C single crystal in a magnetic field
[31] | Cullen J R and Clark A E 1977 Phys. Rev. B 15 4510 | Magnetostriction and structural distortion in rare-earth intermetallics
[32] | Buisson G, Tchéou F, Sayetat F, and Scheunemann K 1976 Solid State Commun. 18 871 | Crystallographic and magnetic properties of TbCrO4 at low temperature (x-ray and neutron experiments)
[33] | Alberts L and Lee E W 1961 Proc. Phys. Soc. 78 728 | Magnetostriction in Antiferromagnetic Nickel Oxide
[34] | He A N, Ma T Y, Zhang J J, Luo W, and Yan M 2009 J. Magn. Magn. Mater. 321 3778 | Antiferromagnetic Mn50Fe50 wire with large magnetostriction
[35] | Peng W Y and Zhang J H 2006 Appl. Phys. Lett. 89 262501 | Magnetostriction studies in an antiferromagnetic polycrystalline Mn42Fe58 alloy
[36] | Long Y W 2007 Phys. Rev. B 75 104402 | Synthesis, structure, magnetism and specific heat of and its zircon-to-scheelite phase transition
[37] | Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 | GSAS-II : the genesis of a modern open-source all purpose crystallography software package
[38] | Ma Y N, Wang Y X, Cong J C, and Sun Y 2019 Phys. Rev. Lett. 122 255701 | Magnetic-Field Tuning of Hydrogen Bond Order-Disorder Transition in Metal-Organic Frameworks
[39] | Chai Y S, Cong J Z, He J C, Su D, Ding X X, Singleton J, Zapf V, and Sun Y 2021 Phys. Rev. B 103 174433 | Giant magnetostriction and nonsaturating electric polarization up to 60 T in the polar magnet