[1] | Ren D D, Ahtapodov L, Nilsen J S, Yang J F, Gustafsson A, Huh J, Conibeer G J, van Helvoort A T J, Fimland B O, and Weman H 2018 Nano Lett. 18 2304 | Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature
[2] | De Luca M, Fasolato C, Verheijen M A, Ren Y, Swinkels M Y, Kolling S, Bakkers E, Rurali R, Cartoixa X, and Zardo I 2019 Nano Lett. 19 4702 | Phonon Engineering in Twinning Superlattice Nanowires
[3] | Gou G Y, Dai G Z, Qian C, Liu Y F, Fu Y, Tian Z Y, He Y K, Kong L G, Yang J L, Sun J, and Gao Y L 2016 Nanoscale 8 14580 | High-performance ultraviolet photodetectors based on CdS/CdS:SnS2 superlattice nanowires
[4] | Li F Z, Meng Y, Dong R T, Yip S, Lan C Y, Kang X, Wang F Y, Chan K S, and Ho J C 2019 ACS Nano 13 12042 | High-Performance Transparent Ultraviolet Photodetectors Based on InGaZnO Superlattice Nanowire Arrays
[5] | Jung C S, Kim H S, Im H S, Seo Y S, Park K, Back S H, Cho Y J, Kim C H, Park J, and Ahn J P 2013 Nano Lett. 13 543 | Polymorphism of GeSbTe Superlattice Nanowires
[6] | Beckers A, Thewissen M, and Sorée B 2018 J. Appl. Phys. 124 144304 | Energy filtering in silicon nanowires and nanosheets using a geometric superlattice and its use for steep-slope transistors
[7] | Peri L, Prete D, Demontis V, Zannier V, Rossi F, Sorba L, Beltram F, and Rossella F 2022 Nano Energy 103 107700 | Giant reduction of thermal conductivity and enhancement of thermoelectric performance in twinning superlattice InAsSb nanowires
[8] | Li F Z, Yip S, Dong R T, Zhou Z Y, Lan C Y, Liang X G, Li D P, Meng Y, Kang X L, and Ho J C 2019 Nano Res. 12 1796 | Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors
[9] | Xiong Z, Cai Y, Ren X, Cao B, Liu J, Huo Z, and Tang J 2017 ACS Appl. Mater. & Interfaces 9 32424 | Solution-Processed CdS/Cu2 S Superlattice Nanowire with Enhanced Thermoelectric Property
[10] | Yoo B, Xiao F, Bozhilov K N, Herman J, Ryan M A, and Myung N V 2007 Adv. Mater. 19 296 | Electrodeposition of Thermoelectric Superlattice Nanowires
[11] | Gudiksen M S, Lauhon L J, Wang J, Smith D C, and Lieber C M 2002 Nature 415 617 | Growth of nanowire superlattice structures for nanoscale photonics and electronics
[12] | Irrera A, Artoni P, Fioravanti V, Franzò G, Fazio B, Musumeci P, Boninelli S, Impellizzeri G, Terrasi A, Priolo F, and Iacona F 2014 Nanoscale Res. Lett. 9 74 | Visible and infrared emission from Si/Ge nanowires synthesized by metal-assisted wet etching
[13] | Wu Y Y, Fan R, and Yang P D 2002 Nano Lett. 2 83 | Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires
[14] | Flynn G, Ramasse Q M, and Ryan K M 2016 Nano Lett. 16 374 | Solvent Vapor Growth of Axial Heterostructure Nanowires with Multiple Alternating Segments of Silicon and Germanium
[15] | Yu L W, Alet P J, Picardi G, and Roca I C P 2009 Phys. Rev. Lett. 102 125501 | An In-Plane Solid-Liquid-Solid Growth Mode for Self-Avoiding Lateral Silicon Nanowires
[16] | Yu L W, Oudwan M, Moustapha O, Fortuna F, and Roca I C P 2009 Appl. Phys. Lett. 95 113106 | Guided growth of in-plane silicon nanowires
[17] | Zhao Y L, Ma H G, Dong T G, Wang J Z, Yu L H, Xu J, Shi Y, Chen K J, and Roca I C P 2018 Nano Lett. 18 6931 | Nanodroplet Hydrodynamic Transformation of Uniform Amorphous Bilayer into Highly Modulated Ge/Si Island-Chains
[18] | Zhao Y L, Li L F, Liu S S, Wang J Z, Xu J, Shi Y, Chen K J, Roca I C P, and Yu L W 2020 Nanotechnology 31 145602 | Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes
[19] | Thurmond C D 1953 J. Phys. Chem. 57 827 | Equilibrium Thermochemistry of Solid and Liquid Alloys of Germanium and of Silicon. I. The Solubility of Ge and Si in Elements of Groups III, IV and V
[20] | Kühnle J, Bergmann R B, and Werner J H 1997 J. Cryst. Growth 173 62 | Role of critical size of nuclei for liquid-phase epitaxy on polycrystalline Si films
[21] | Fleurial J P and Borshchevsky A 1990 J. Electrochem. Soc. 137 2928 | Si‐Ge‐Metal Ternary Phase Diagram Calculations
[22] | Dismukes J P, Ekstrom L, and Paff R J 1964 J. Phys. Chem. 68 3021 | Lattice Parameter and Density in Germanium-Silicon Alloys1
[23] | Gupta S, Chen R, Huang Y C, Kim Y, Sanchez E, Harris J S, and Saraswat K C 2013 Nano Lett. 13 3783 | Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge 1– x Sn x ): A Novel Route for Ge 1– x Sn x Nanostructure Fabrication
[24] | Oehrlein G S, Bestwick T D, Jones P L, Jaso M A, and Lindström J L 1991 J. Electrochem. Soc. 138 1443 | Selective Dry Etching of Germanium with Respect to Silicon and Vice Versa