[1] | Ketterle W 2002 Rev. Mod. Phys. 74 1131 | Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser
[2] | Nadlinger D P, Drmota P, Nichol B C, Araneda G, Main D, Srinivas R, Lucas D M, Ballance C J, Ivanov K, Tan E Y, Sekatski P, Urbanke R L, Renner R, Sangouard N, and Bancal J D 2022 Nature 607 682 | Experimental quantum key distribution certified by Bell's theorem
[3] | Ekert A K 1991 Phys. Rev. Lett. 67 661 | Quantum cryptography based on Bell’s theorem
[4] | Ashhab S, Maruyama K, Brukner Č, and Nori F 2009 Phys. Rev. A 80 062106 | Bell’s experiment with intra- and inter-pair entanglement: Single-particle mode entanglement as a case study
[5] | Heaney L, Lee S W, and Jaksch D 2010 Phys. Rev. A 82 042116 | Bell inequality for pairs of particle-number-superselection-rule restricted states
[6] | Xue P, Xiao L, Ruffolo G, Mazzari A, Temistocles T, Terra C M, and Rabelo R 2023 Phys. Rev. Lett. 130 040201 | Synchronous Observation of Bell Nonlocality and State-Dependent Contextuality
[7] | Bouwmeester D, Pan J W, Mattle K, Eibl M, and Zeilinger A 1997 Nature 390 575 | Experimental quantum teleportation
[8] | Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869 | Teleportation of Continuous Quantum Variables
[9] | Schuch N, Verstraete F, and Ignacio C J 2004 Phys. Rev. A 70 042310 | Quantum entanglement theory in the presence of superselection rules
[10] | Heaney L and Vedral V 2009 Phys. Rev. Lett. 103 200502 | Natural Mode Entanglement as a Resource for Quantum Communication
[11] | Mattle K, Weinfurter H, and Kwiat P G 1996 Phys. Rev. Lett. 76 4656 | Dense Coding in Experimental Quantum Communication
[12] | Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, and Peng K C 2002 Phys. Rev. Lett. 88 047904 | Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam
[13] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[14] | Knill E, Laflamme R, and Milburn G J 2001 Nature 409 46 | A scheme for efficient quantum computation with linear optics
[15] | Zheng R H, Xiao Y, Su S L, Chen Y H, Shi Z C, Song J, Xia Y, and Zheng S B 2021 Phys. Rev. A 103 052402 | Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping
[16] | Shao X Q, Wu J H, Yi X X, and Long G L 2017 Phys. Rev. A 96 062315 | Dissipative preparation of steady Greenberger-Horne-Zeilinger states for Rydberg atoms with quantum Zeno dynamics
[17] | Zheng S B 2001 Phys. Rev. Lett. 87 230404 | One-Step Synthesis of Multiatom Greenberger-Horne-Zeilinger States
[18] | Franson J D, Donegan M M, and Jacobs B C 2004 Phys. Rev. A 69 052328 | Generation of entangled ancilla states for use in linear optics quantum computing
[19] | Cheng L Y, Wang H F, Yeon K H, and Zhang S 2012 J. Opt. Soc. Am. B 29 1584 | Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics
[20] | Ji Y Q, Li H, Liu Y L, Zhang D W, Zhou X J, Xiao R J, Dong L, and Xiu X M 2020 Laser Phys. Lett. 17 085202 | Preparation of entangled states in multiple cavities
[21] | Li D X, Shao X Q, Wu J H, Yi X X 2017 Opt. Express 25 33359 | Noise-induced distributed entanglement in atom-cavity-fiber system
[22] | Sheng Y B, Deng F G, and Zhou H Y 2008 Phys. Rev. A 77 042308 | Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity
[23] | Millo O, Katz D, and Cao Y W 2001 Phys. Rev. Lett. 86 5751 | Imaging and Spectroscopy of Artificial-Atom States in Core/Shell Nanocrystal Quantum Dots
[24] | Shi J 2019 J. Phys. B 52 01LT01 | Generation and concentration of two-photon partially entangled Knill–Laflamme–Milburn state
[25] | Wang Y, Hu C S, Shi Z C, Huang B H, Song J, and Xia Y 2019 Ann. Phys. 531 1900006 | Accelerated and Noise‐Resistant Protocol of Dissipation‐Based Knill–Laflamme–Milburn State Generation with Lyapunov Control
[26] | Liu Q G, Wu Q C, and Ji X 2014 J. Opt. Soc. Am. B 31 672 | Preparation of Knill–Lafamme–Milburn states based on superconducting qutrits
[27] | Zheng R H, Kang Y H, Ran D, Shi Z C, and Xia Y 2020 Phys. Rev. A 101 012345 | Deterministic interconversions between the Greenberger-Horne-Zeilinger states and the states by invariant-based pulse design
[28] | Haase T, Alber G, and Stojanović V M 2021 Phys. Rev. A 103 032427 | Conversion from to Greenberger-Horne-Zeilinger states in the Rydberg-blockade regime of neutral-atom systems: Dynamical-symmetry-based approach
[29] | Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
[30] | Aolita L, de Melo F, and Davidovich L 2015 Rep. Prog. Phys. 78 042001 | Open-system dynamics of entanglement:a key issues review
[31] | Poyatos J F, Cirac J I, and Zoller Z 1996 Phys. Rev. Lett. 77 4728 | Quantum Reservoir Engineering with Laser Cooled Trapped Ions
[32] | Plenio M B and Huelga S F 2002 Phys. Rev. Lett. 88 197901 | Entangled Light from White Noise
[33] | Zou J, Zhang S, and Tserkovnyak Y 2022 Phys. Rev. B 106 L180406 | Bell-state generation for spin qubits via dissipative coupling
[34] | Cole D C, Wu J J, Erickson S D, Hou P Y, Wilson A C, Leibfried D R F 2021 New J. Phys. 23 073001 | Dissipative preparation of W states in trapped ion systems
[35] | Shao X Q, Zheng T Y, Oh C H, and Zhang S 2014 Phys. Rev. A 89 012319 | Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission
[36] | Su S L, Shao X Q, Wang H F, and Zhang S 2014 Sci. Rep. 4 7566 | Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay
[37] | Reiter F, Reeb D, and Sørensen A S 2016 Phys. Rev. Lett. 117 040501 | Scalable Dissipative Preparation of Many-Body Entanglement
[38] | Song J, Xia Y, Sun X D, and Song H S 2012 Phys. Rev. A 86 034303 | Dissipative preparation of multibody entanglement via quantum feedback control
[39] | De Moraes N S D, Teizen V F, Montenegro V, and Vernek E 2017 Phys. Rev. A 96 062313 | Steady many-body entanglements in dissipative systems
[40] | Shao X Q, Wang Z H, Liu H D, and Yi X X 2016 Phys. Rev. A 94 032307 | Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control
[41] | Sweke R, Sinayskiy I, and Petruccione F 2013 Phys. Rev. A 87 042323 | Dissipative preparation of large states in optical cavities
[42] | Shen L T, Chen X Y, Yang Z B, Wu H Z, and Zheng S B 2011 Phys. Rev. A 84 064302 | Steady-state entanglement for distant atoms by dissipation in coupled cavities
[43] | Berkley J A 2003 Science 300 1548 | Entangled Macroscopic Quantum States in Two Superconducting Qubits
[44] | DiCarlo L 2010 Nature 467 574 | Preparation and measurement of three-qubit entanglement in a superconducting circuit
[45] | Politi A, Matthews J C F, and O'Brien J L 2009 Science 325 1221 | Shor’s Quantum Factoring Algorithm on a Photonic Chip
[46] | Akopian N, Lindner N H, Poem E, Berlatzky Y, Avron J, Gershoni D, Gerardot B D, and Petroff P M 2006 Phys. Rev. Lett. 96 130501 | Entangled Photon Pairs from Semiconductor Quantum Dots
[47] | Yin J, Cao Y, Li Y H et al. 2017 Science 356 1140 | Satellite-based entanglement distribution over 1200 kilometers
[48] | Balasubramanian G, Neumann P, and Twitchen D 2009 Nat. Mater. 8 383 | Ultralong spin coherence time in isotopically engineered diamond
[49] | Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501 | Universal Quantum Computation in Decoherence-Free Subspace with Neutral Atoms
[50] | Brion E, Pedersen L H, and Molmer K 2007 Phys. Rev. A 75 032328 | Universal quantum computation in a neutral-atom decoherence-free subspace
[51] | Blatt R and Wineland D 2008 Nature 453 1008 | Entangled states of trapped atomic ions
[52] | Saffman M, Walker T G, and Mlmer K 2010 Rev. Mod. Phys. 82 2313 | Quantum information with Rydberg atoms
[53] | Saffman M and Walker T G 2005 Phys. Rev. A 72 042302 | Entangling single- and -atom qubits for fast quantum state detection and transmission
[54] | Shi X F 2020 Phys. Rev. Appl. 13 024008 | Suppressing Motional Dephasing of Ground-Rydberg Transition for High-Fidelity Quantum Control with Neutral Atoms
[55] | Weimer H, Müller M, Lesanovsky I, Zoller P, B, and Hans P 2010 Nat. Phys. 6 382 | A Rydberg quantum simulator
[56] | Ren J G 2017 Nature 549 70 | Ground-to-satellite quantum teleportation
[57] | Montanaro A and Pallister S 2016 Phys. Rev. A 93 032324 | Quantum algorithms and the finite element method
[58] | Mølmer K, Isenhower I, and Saffman M 2011 J. Phys. B 44 184016 | Efficient Grover search with Rydberg blockade
[59] | Li R, Yu D M, Su S L, and Qian J Q 2020 Phys. Rev. A 101 042328 | Periodically driven facilitated high-efficiency dissipative entanglement with Rydberg atoms
[60] | Su S L and Li W B 2021 Phys. Rev. A 104 033716 | Dipole-dipole-interaction–driven antiblockade of two Rydberg atoms
[61] | Chen Y H, Shi Z C, Song J, Xia Y, and Zheng S B 2018 Phys. Rev. A 97 032328 | Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms
[62] | Walker T G and Saffman M 2008 Phys. Rev. A 77 032723 | Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms
[63] | Li D X and Shao X Q 2019 Phys. Rev. A 99 032348 | Directional quantum state transfer in a dissipative Rydberg-atom-cavity system