[1] | Griffiths D J and Schroeter D F 2018 Introduction to Quantum Mechanics (Cambridge: Cambridge University Press) |
[2] | MOTT N F 1968 Rev. Mod. Phys. 40 677 | Metal-Insulator Transition
[3] | Tinkham M 2004 Introduction to Superconductivity (Courier Corporation) |
[4] | Dalfovo F, Giorgini S, Pitaevskii L P, and Stringari S 1999 Rev. Mod. Phys. 71 463 | Theory of Bose-Einstein condensation in trapped gases
[5] | Wilczek F 1982 Phys. Rev. Lett. 49 957 | Quantum Mechanics of Fractional-Spin Particles
[6] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[7] | Wilczek F 1990 Fractional Statistics and Anyon Superconductivity (Singerpore: World Scientific) vol 5 |
[8] | Stern A 2010 Nature 464 187 | Non-Abelian states of matter
[9] | Moore G and Read N 1991 Nucl. Phys. B 360 362 | Nonabelions in the fractional quantum hall effect
[10] | Wen X G 1991 Phys. Rev. Lett. 66 802 | Non-Abelian statistics in the fractional quantum Hall states
[11] | Kitaev A Y 2003 Ann. Phys. 303 2 | Fault-tolerant quantum computation by anyons
[12] | Freedman M H, Larsen M, and Wang Z 2002 Commun. Math. Phys. 227 605 | A Modular Functor Which is Universal¶for Quantum Computation
[13] | Sarma S D, Freedman M, and Nayak C 2006 Phys. Today 59 32 | Topological quantum computation
[14] | Stern A and Lindner N H 2013 Science 339 1179 | Topological Quantum Computation—From Basic Concepts to First Experiments
[15] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[16] | Barkeshli M, Jian C M, and Qi X L 2013 Phys. Rev. B 87 045130 | Twist defects and projective non-Abelian braiding statistics
[17] | Teo J C Y, Roy A, and Chen X 2014 Phys. Rev. B 90 115118 | Unconventional fusion and braiding of topological defects in a lattice model
[18] | Bombin H 2010 Phys. Rev. Lett. 105 030403 | Topological Order with a Twist: Ising Anyons from an Abelian Model
[19] | Zheng H X, Dua A, and Jiang L 2015 Phys. Rev. B 92 245139 | Demonstrating non-Abelian statistics of Majorana fermions using twist defects
[20] | Brown B J, Laubscher K, Kesselring M S, and Wootton J R 2017 Phys. Rev. X 7 021029 | Poking Holes and Cutting Corners to Achieve Clifford Gates with the Surface Code
[21] | Alicea J, Oreg Y, Refael G, von Oppen F, and Fisher M P 2011 Nat. Phys. 7 412 | Non-Abelian statistics and topological quantum information processing in 1D wire networks
[22] | Ivanov D A 2001 Phys. Rev. Lett. 86 268 | Non-Abelian Statistics of Half-Quantum Vortices in -Wave Superconductors
[23] | Bonderson P, Kitaev A, and Shtengel K 2006 Phys. Rev. Lett. 96 016803 | Detecting Non-Abelian Statistics in the Fractional Quantum Hall State
[24] | Clarke D J, Alicea J, and Shtengel K 2013 Nat. Commun. 4 1348 | Exotic non-Abelian anyons from conventional fractional quantum Hall states
[25] | Tantivasadakarn N, Verresen R, and Vishwanath A 2022 arXiv:2209.03964 [quant-ph] | The Shortest Route to Non-Abelian Topological Order on a Quantum Processor
[26] | Liu Y J, Shtengel K, Smith A, and Pollmann F 2022 PRX Quantum 3 040315 | Methods for Simulating String-Net States and Anyons on a Digital Quantum Computer
[27] | Kalinowski M, Maskara N, and Lukin M D 2022 arXiv:2211.00017 [quant-ph] | Non-Abelian Floquet Spin Liquids in a Digital Rydberg Simulator
[28] | Deng D L, Wang S T, Sun K, and Duan L M 2015 Phys. Rev. B 91 094513 | Proposal for observing non-Abelian statistics of Majorana-Shockley fermions in an optical lattice
[29] | Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y, and Stern A 2018 Nature 559 205 | Observation of half-integer thermal Hall conductance
[30] | Kasahara Y, Ohnishi T, Mizukami Y et al. 2018 Nature 559 227 | Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid
[31] | Dolev M, Heiblum M, Umansky V, Stern A, and Mahalu D 2008 Nature 452 829 | Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state
[32] | Bartolomei H, Kumar M, Bisognin R et al. 2020 Science 368 173 | Fractional statistics in anyon collisions
[33] | Satzinger K J, Liu Y J, Smith A et al. 2021 Science 374 1237 | Realizing topologically ordered states on a quantum processor
[34] | Dumitrescu P T, Bohnet J G, Gaebler J P, Hankin A, Hayes D, Kumar A, Neyenhuis B, Vasseur R, and Potter A C 2022 Nature 607 463 | Dynamical topological phase realized in a trapped-ion quantum simulator
[35] | Kyprianidis A, Machado F, Morong W et al. 2021 Science 372 1192 | Observation of a prethermal discrete time crystal
[36] | Mi X, Ippoliti M, Quintana C et al. 2022 Nature 601 531 | Time-crystalline eigenstate order on a quantum processor
[37] | Zhang X, Jiang W, Deng J et al. 2022 Nature 607 468 | Digital quantum simulation of Floquet symmetry-protected topological phases
[38] | Acharya R, Aleiner I, Allen R et al. 2022 arXiv:2207.06431 [quant-ph] | Suppressing quantum errors by scaling a surface code logical qubit
[39] | Zhao Y W, Ye Y S, Huang H L et al. 2022 Phys. Rev. Lett. 129 030501 | Realization of an Error-Correcting Surface Code with Superconducting Qubits
[40] | Krinner S, Lacroix N, Remm A et al. 2022 Nature 605 669 | Realizing repeated quantum error correction in a distance-three surface code
[41] | Marques J F, Varbanov B M, Moreira M S et al. 2022 Nat. Phys. 18 80 | Logical-qubit operations in an error-detecting surface code
[42] | Andersen T I, Lensky Y D, Kechedzhi K et al. 2022 arXiv:2210.10255 [quant-ph] | Observation of non-Abelian exchange statistics on a superconducting processor
[43] | Wen X G 2003 Phys. Rev. Lett. 90 016803 | Quantum Orders in an Exact Soluble Model
[44] | Kitaev A and Kong L 2012 Commun. Math. Phys. 313 351 | Models for Gapped Boundaries and Domain Walls
[45] | Litinski D and von Oppen F 2017 Phys. Rev. B 96 205413 | Braiding by Majorana tracking and long-range CNOT gates with color codes
[46] | Dennis E, Kitaev A, Landahl A, and Preskill J 2002 J. Math. Phys. 43 4452 | Topological quantum memory
[47] | Raussendorf R, Harrington J, and Goyal K 2007 New J. Phys. 9 199 | Topological fault-tolerance in cluster state quantum computation
[48] | Bombin H and Martin-Delgado M A 2009 J. Phys. A 42 095302 | Quantum measurements and gates by code deformation
[49] | You Y Z and Wen X G 2012 Phys. Rev. B 86 161107 | Projective non-Abelian statistics of dislocation defects in a rotor model
[50] | Kesselring M S, de Fuente J C M L, Thomsen F, Eisert J, Bartlett S D, and Brown B J 2022 arXiv:2212.00042 [quant-ph] | Anyon condensation and the color code