[1] | Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828 | Localized Surface Plasmon Resonance Sensors
[2] | Wang X, Huang S C, Hu S, Yan S, and Ren B 2020 Nat. Rev. Phys. 2 253 | Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
[3] | Li G C, Zhang Q, Maier S A, and Lei D 2018 Nanophotonics 7 1865 | Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry
[4] | Han X X, Rodriguez R S, Haynes C L, Ozaki Y, and Zhao B 2022 Nat. Rev. Methods Primers 1 87 | Surface-enhanced Raman spectroscopy
[5] | Sharma B, Frontiera R R, Henry A I, Ringe E, and VanDuyne R P 2012 Mater. Today 15 16 | SERS: Materials, applications, and the future
[6] | Willets K A, Wilson A J, Sundaresan V, and Joshi P B 2017 Chem. Rev. 117 7538 | Super-Resolution Imaging and Plasmonics
[7] | Lee H, Kang K, Mochizuki K, Lee C, Toh K A, Lee S A, Fujita K, and Kim D 2020 Nano Lett. 20 8951 | Surface Plasmon Localization-Based Super-resolved Raman Microscopy
[8] | Azzam S I, Kildishev A V, Ma R M, Ning C Z, Oulton R, S V, Stockman M I, Xu J L, and Zhang X 2020 Light: Sci. & Appl. 9 90 | Ten years of spasers and plasmonic nanolasers
[9] | Deeb C and Pelouard J L 2017 Phys. Chem. Chem. Phys. 19 29731 | Plasmon lasers: coherent nanoscopic light sources
[10] | Hill R T, Mock J J, Hucknall A, Wolter S D, Jokerst N M, Smith D R, and Chilkoti A 2012 ACS Nano 6 9237 | Plasmon Ruler with Angstrom Length Resolution
[11] | Ciracì C, Hill R T, Mock J J, Urzhumov Y, Fernandez-Dominguez A I, Maier S A, Pendry J B, Chilkoti A, and Smith D R 2012 Science 337 1072 | Probing the Ultimate Limits of Plasmonic Enhancement
[12] | Chen H, Jiang Z H, and Hu H T 2022 Nat. Photon. 16 651 | Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle
[13] | Peng J L, Jeong H H, Lin Q Q, Cormier S, Liang H L, De V M, V, and Baumberg J J 2019 Sci. Adv. 5 2205 | Scalable electrochromic nanopixels using plasmonics
[14] | Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957 | New materials for tunable plasmonic colloidal nanocrystals
[15] | Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J W, Wei W D 2018 Chem. Rev. 118 2927 | Surface-Plasmon-Driven Hot Electron Photochemistry
[16] | Cho C H, Aspetti C O, Turk M E, Kikkawa J M, Nam S W, and Agarwal R 2011 Nat. Mater. 10 669 | Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons
[17] | Russell K J, Liu T L, Cui S Y, and Hu E L 2012 Nat. Photon. 6 459 | Large spontaneous emission enhancement in plasmonic nanocavities
[18] | Zhang H Q, Abhiraman B, Zhang Q, Miao J S, Jo K Y, Roccasecca S, Knight M W, Davoyan A R, and J 2020 Nat. Commun. 11 3552 | Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings
[19] | Xie S F, Choi S I, Xia X H, and Xia Y N 2013 Curr. Opin. Chem. Eng. 2 142 | Catalysis on faceted noble-metal nanocrystals: both shape and size matter
[20] | Sun Y G, Mayers B, Herricks T, and Xia Y N 2003 Nano Lett. 3 955 | Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence
[21] | Hamans R F, Parente M, Garcia E A, and Baldi A 2022 J. Phys. Chem. C 126 8703 | Optical Properties of Colloidal Silver Nanowires
[22] | Zhang A q, Qian D J, and Chen M 2013 Eur. Phys. J. D 67 231 | Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures
[23] | Zou Y F and Yu L 2021 Chin. Phys. Lett. 38 023301 | Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers
[24] | Xue J C, Lin L M, Zhou Z K, and Wang X H 2020 Chin. Phys. Lett. 37 114201 | Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing
[25] | Zhang J, Xu Y G, Zhang J X, Guan L L, and Li Y F 2020 Chin. Phys. Lett. 37 037101 | Bright-Dark Mode Coupling Model of Plasmons*
[26] | Yao F Q, Li F, He Z C, Liu Y H, Xu L T, and Han X B 2020 Appl. Sci. 10 2603 | Tunable Fano Resonances in an Ultra-Small Gap
[27] | Fang C H, Lee Y H, Shao L, Jiang R, Wang J F, and Xu Q H 2013 ACS Nano 7 9354 | Correlating the Plasmonic and Structural Evolutions during the Sulfidation of Silver Nanocubes
[28] | Hu H L, Akimov Y A, Duan H G, Li X L, Liao M Y, Tan R L S, Wu L, Chen H Y, Fan H J, Bai P, Lee P S, Yang J K W, and Shen Z X 2013 Nanoscale 5 12086 | Photoluminescence via gap plasmons between single silver nanowires and a thin gold film
[29] | Edward D P 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) p 407 |
[30] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 | Optical Constants of the Noble Metals
[31] | Benz F, Chikkaraddy R, Salmon A, Ohadi H, de Nijs B, Mertens J, Carnegie C, Bowman R W, and Baumberg J J 2016 J. Phys. Chem. Lett. 7 2264 | SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape
[32] | Ma Y W, Wu Z W, Zhang L H, Liu W F, and Zhang J 2015 Chin. Phys. Lett. 32 094202 | Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method
[33] | Zhao P Q, Hu D S, Wu X L 2005 Chin. Phys. Lett. 22 1492 |
1.2 nm||