[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S, and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[3] | Neto A H C, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[4] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[5] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[6] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[7] | Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W, and Chang H X 2022 Nat. Commun. 13 5067 | Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy
[8] | Lin M W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, and Xiao K 2016 J. Mater. Chem. C 4 315 | Ultrathin nanosheets of CrSiTe3 : a semiconducting two-dimensional ferromagnetic material
[9] | Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, and Yu T 2019 Nano Lett. 19 3138 | Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3
[10] | McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, Cooper V R, Xu X, and Sales B C 2017 Phys. Rev. Mater. 1 014001 | Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered crystals
[11] | Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li J L 2017 Nat. Nanotechnol. 12 744 | Janus monolayers of transition metal dichalcogenides
[12] | Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano 11 8192 | Janus Monolayer Transition-Metal Dichalcogenides
[13] | Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Yu Y, Huang Y, Xu X, Duan X, Ji W, and Duan X 2021 Nat. Mater. 20 818 | Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order
[14] | Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J, and Núñez-Regueiro M 2015 J. Phys.: Condens. Matter 27 176002 | Ferromagnetism in layered metastable 1 T -CrTe2
[15] | Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, and Zhong S Y 2020 Nano Res. 13 3358 | Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2
[16] | Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun. 12 2492 | Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films
[17] | Hu T F, Wan W H, Ge Y F, and Liu Y 2020 J. Magn. Magn. Mater. 497 165941 | Strain-tunable magnetic order and electronic structure in 2D CrAsS4
[18] | Barla P, Joshi V K, and Bhat S 2021 J. Comput. Electron. 20 805 | Spintronic devices: a promising alternative to CMOS devices
[19] | Jiang S W, Shan J, and Mak K F 2018 Nat. Mater. 17 406 | Electric-field switching of two-dimensional van der Waals magnets
[20] | Ye H S, Zhu Y J, Bai D M, Zhang J T, Wu X S, and Wang J L 2021 Phys. Rev. B 103 035423 | Spin valve effect in VN/GaN/VN van der Waals heterostructures
[21] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501 | Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions
[22] | Zheng Y, Ma X, Yan F, Lin H, Zhu W, Ji Y, Wang R, and Wang K 2022 npj 2D Mater. Appl. 6 62 | Spin filtering effect in all-van der Waals heterostructures with WSe2 barriers
[23] | Zhu W, Lin H, Yan F, Hu C, Wang Z, Zhao L, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patane A, Zutic I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 e2104658 | Large Tunneling Magnetoresistance in van der Waals Ferromagnet/Semiconductor Heterojunctions
[24] | Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K, and Wang K Y 2020 ACS Appl. Mater. & Interfaces 12 43921 | Spin-Valve Effect in Fe3 GeTe2 /MoS2 /Fe3 GeTe2 van der Waals Heterostructures
[25] | Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072 | From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions
[26] | Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, and Bolotin K I 2013 Nano Lett. 13 3626 | Bandgap Engineering of Strained Monolayer and Bilayer MoS2
[27] | Zhang P, Peng X L, Qian T et al. 2016 Phys. Rev. B 94 104510 | Observation of high- superconductivity in rectangular monolayers
[28] | Pei Q, Wang X C, Zou J J, and Wen B M 2018 Front. Phys. 13 137105 | Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3
[29] | Wang Y, Wang S S, Lu Y, Jiang J, and Yang S A 2016 Nano Lett. 16 4576 | Strain-Induced Isostructural and Magnetic Phase Transitions in Monolayer MoN2
[30] | Kresse G 1995 J. Non-Cryst. Solids 192–193 222 | Ab initio molecular dynamics for liquid metals
[31] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[32] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 | Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
[33] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[34] | Rivero P, Loschen C, Moreira P R, and Illas F 2009 J. Comput. Chem. 30 2316 | Performance of plane-wave-based LDA+ U and GGA+ U approaches to describe magnetic coupling in molecular systems
[35] | Wang L, Maxisch T, and Ceder G 2006 Phys. Rev. B 73 195107 | Oxidation energies of transition metal oxides within the framework
[36] | Jang S W, Jeong M Y, Yoon H, Ryee S, and Han M J 2019 Phys. Rev. Mater. 3 031001 | Microscopic understanding of magnetic interactions in bilayer
[37] | Jiang P H, Wang C, Chen D H, Zhong Z C, Yuan Z, Lu Z Y, and Ji W 2019 Phys. Rev. B 99 144401 | Stacking tunable interlayer magnetism in bilayer
[38] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science
[39] | Baroni S, Gironcoli S D, Corso A D, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 | Phonons and related crystal properties from density-functional perturbation theory
[40] | Cui Q R, Liang J H, Shao Z J, Cui P, and Yang H X 2020 Phys. Rev. B 102 094425 | Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides
[41] | Dey D, Ray A, and Yu L P 2022 Phys. Rev. Mater. 6 L061002 | Intrinsic ferromagnetism and restrictive thermodynamic stability in and Janus monolayers
[42] | Goodenough J B 1955 Phys. Rev. 100 564 | Theory of the Role of Covalence in the Perovskite-Type Manganites
[43] | Kanamori J 1959 J. Phys. Chem. Solids 10 87 | Superexchange interaction and symmetry properties of electron orbitals
[44] | Anderson P W 1959 Phys. Rev. 115 2 | New Approach to the Theory of Superexchange Interactions