[1] | Anderson P 1987 Science 235 1196 | The Resonating Valence Bond State in La2CuO4 and Superconductivity
[2] | Savary L and Balents L 2016 Rep. Prog. Phys. 80 016502 | Quantum spin liquids: a review
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[4] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[5] | Wen X G 2002 Phys. Rev. B 65 165113 | Quantum orders and symmetric spin liquids
[6] | Kitaev A 2003 Ann. Phys. 303 2 | Fault-tolerant quantum computation by anyons
[7] | Nayak C, Simon S, Stern A, Freedman M, and Sankar D S 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[8] | Jiang H C, Yao H, and Balents L 2012 Phys. Rev. B 86 024424 | Spin liquid ground state of the spin- square - Heisenberg model
[9] | Gong S S, Zhu W, Sheng D N, Motrunich O, and Fisher M 2014 Phys. Rev. Lett. 113 027201 | Plaquette Ordered Phase and Quantum Phase Diagram in the Spin- Square Heisenberg Model
[10] | Wang L, Z C G, Verstraete F, and Wen X G 2016 Phys. Rev. B 94 075143 | Tensor-product state approach to spin- square antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality
[11] | Yan S M, Huse D, and White S R 2011 Science 332 1173 | Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet
[12] | Iqbal Y, Becca F, Sorella S, and Poilblanc D 2013 Phys. Rev. B 87 060405 | Gapless spin-liquid phase in the kagome spin- Heisenberg antiferromagnet
[13] | Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, and Xiang T 2017 Phys. Rev. Lett. 118 137202 | Gapless Spin-Liquid Ground State in the Kagome Antiferromagnet
[14] | Wang L, Zhang Y, and Sandvik A 2022 Chin. Phys. Lett. 39 077502 | Quantum Spin Liquid Phase in the Shastry-Sutherland Model Detected by an Improved Level Spectroscopic Method
[15] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[16] | Knolle J, Kovrizhin D, Chalker J, and Moessner R 2014 Phys. Rev. Lett. 112 207203 | Dynamics of a Two-Dimensional Quantum Spin Liquid: Signatures of Emergent Majorana Fermions and Fluxes
[17] | Zhu W, Gong S S, and Sheng D N 2019 Proc. Natl. Acad. Sci. USA 116 5437 | Identifying spinon excitations from dynamic structure factor of spin-1/2 Heisenberg antiferromagnet on the Kagome lattice
[18] | Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried J, and K W 2015 Nat. Chem. 7 389 | Assembling molecular Sierpiński triangle fractals
[19] | Kempkes S, Slot M, Freeney S, Zevenhuizen S, Vanmaekelbergh D, Swart I, and Smith C 2019 Nat. Phys. 15 127 | Design and characterization of electrons in a fractal geometry
[20] | Liu C, Zhou Y, Wang G, Yin Y, C L, Huang H, Guan D, Y L, Wang S, Zheng H, Liu C, Han Y, Evans J, Liu F, and Jia J 2021 Phys. Rev. Lett. 126 176102 | Sierpiński Structure and Electronic Topology in Bi Thin Films on InSb(111)B Surfaces
[21] | Brzezińska M, Cook A, and Neupert T 2018 Phys. Rev. B 98 205116 | Topology in the Sierpiński-Hofstadter problem
[22] | Pai S and Prem A 2019 Phys. Rev. B 100 155135 | Topological states on fractal lattices
[23] | Manna S, Pal B, Wang W, and Nielsen A 2020 Phys. Rev. Res. 2 023401 | Anyons and fractional quantum Hall effect in fractal dimensions
[24] | Yang Z J, Lustig E, Lumer Y, and Segev M 2020 Light: Sci. & Appl. 9 128 | Photonic Floquet topological insulators in a fractal lattice
[25] | Sticlet D and Akhmerov A 2016 Phys. Rev. B 94 161115 | Attractive critical point from weak antilocalization on fractals
[26] | Kosior A and Sacha K 2017 Phys. Rev. B 95 104206 | Localization in random fractal lattices
[27] | van Veen E, Yuan S, Katsnelson M, Polini M, and Tomadin A 2016 Phys. Rev. B 93 115428 | Quantum transport in Sierpinski carpets
[28] | van Veen E, Tomadin A, Polini M, Katsnelson M, and Yuan S 2017 Phys. Rev. B 96 235438 | Optical conductivity of a quantum electron gas in a Sierpinski carpet
[29] | Iliasov A A, Katsnelson M I, and Yuan S J 2020 Phys. Rev. B 101 045413 | Hall conductivity of a Sierpiński carpet
[30] | Gefen Y, Mandelbrot B, and Aharony A 1980 Phys. Rev. Lett. 45 855 | Critical Phenomena on Fractal Lattices
[31] | Genzor J, Gendiar A, and Nishino T 2019 arXiv: 1904.10645 [cond-mat.stat-mech] | Measurements of magnetization on the Sierpiński carpet
[32] | Verstraete F and Cirac J 2004 arXiv:cond-mat/0407066 [cond-mat.str-el] | Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions
[33] | Jordan J, Orús R, Vidal G, Verstraete F, and Cirac J 2008 Phys. Rev. Lett. 101 250602 | Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions
[34] | Vidal G 2007 Phys. Rev. Lett. 98 070201 | Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension
[35] | Schollwöck U 2011 Ann. Phys. 326 96 | The density-matrix renormalization group in the age of matrix product states
[36] | Orús R 2014 Ann. Phys. 349 117 | A practical introduction to tensor networks: Matrix product states and projected entangled pair states
[37] | Vidal G 2007 Phys. Rev. Lett. 99 220405 | Entanglement Renormalization
[38] | Levin M and Nave C 2007 Phys. Rev. Lett. 99 120601 | Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models
[39] | Gu Z C, Levin M, and Wen X G 2008 Phys. Rev. B 78 205116 | Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions
[40] | White S R 1992 Phys. Rev. Lett. 69 2863 | Density matrix formulation for quantum renormalization groups
[41] | Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P, and Xiang T 2012 Phys. Rev. B 86 045139 | Coarse-graining renormalization by higher-order singular value decomposition
[42] | Wang M, Ran S J, Liu T, Zhao Y, Zheng Q R, and Su G 2016 Eur. Phys. J. B 89 27 | Phase diagram and exotic spin-spin correlations of anisotropic Ising model on the Sierpiński gasket
[43] | Xie Z Y, Chen J, J F Y, Kong X, Normand B, and Xiang T 2014 Phys. Rev. X 4 011025 | Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States
[44] | See the Supplemental Material for detail description. |
[45] | Pirvu B, Vidal G, Verstraete F, and Tagliacozzo L 2012 Phys. Rev. B 86 075117 | Matrix product states for critical spin chains: Finite-size versus finite-entanglement scaling
[46] | Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404 | Topological Entanglement Entropy
[47] | Zou H, Cui Y, Wang X, Zhang Z, Yang J, G X, Okutani A, Hagiwara M, Matsuda M, Wang G, Mussardo G, Hódsági K, Kormos M, Z H, Kimura S, Yu R, Yu W, Ma J, and Wu J 2021 Phys. Rev. Lett. 127 077201 | Spectra of Quasi-One-Dimensional Antiferromagnet under Transverse Field