Composition | Space group | Atomly Id | $E _{\rm{hull}}$ (eV/atom) | Stability |
---|---|---|---|---|
Lu$_{{20}}$H$_{{2}}$N$_{{17}}$ | $C2/m$ | 1000313230 | 0.036 | $\times$ |
Lu$_{{10}}$HN$_{{8}}$ | $P\bar{1}$ | 1000313257 | 0.058 | $\times$ |
Lu(H$_{{15}}$N$_{{8}}$)$_{{2}}$ | ${P2}_{1}/c$ | 1000313234 | 0.064 | $\times$ |
Lu$_{{6}}$HN$_{{6}}$ | $Cm$ | 1000313346 | 0.077 | $\times$ |
Lu$_{{2}}$H$_{{5}}$N | $Pc$ | 1000313150 | 0.081 | $\times$ |
Lu$_{{2}}$H$_{{2}}$N | $P\bar{3}m1$ | 1000313854 | 0.082 | $\times$ |
LuH$_{{3}}$N$_{{2}}$ | ${P2}_{1}/c$ | 1000313450 | 0.084 | $\times$ |
LuH$_{{5}}$N$_{{2}}$ | $P1$ | 1000313474 | 0.090 | $\times$ |
Lu$_{{3}}$H$_{{6}}$N | $P2_{1}$ | 1000313607 | 0.095 | $\times$ |
LuH$_{{5}}$N | $P2_{1}2_{1}2_{1}$ | 1000313153 | 0.099 | $\times$ |
NH$_{{3}}$ | $P2_{1}3$ | 1000314459 | 0.000 | $\surd$ |
N$_{{2}}$H$_{{3}}$ | $C2/c$ | 1000314332 | 0.000 | $\surd$ |
LuH$_{{3}}$ | $P\bar{3}c1$ | 0000079762 | 0.000 | $\surd$ |
LuH$_{{2}}$ | $Fm\bar{3}m$ | 1000314722 | 0.000 | $\surd$ |
LuN | $Fm\bar{3}m$ | 3001350567 | 0.000 | $\surd$ |
Lu$_{{12}}$N$_{{11}}$ | $C2/m$ | 1000314893 | 0.000 | $\surd$ |
[1] | Dasenbrock-Gammon N et al. 2023 Nature 615 244 | Evidence of near-ambient superconductivity in a N-doped lutetium hydride
[2] | Ming X et al. 2023 arXiv:2303.08759 [cond-mat.supr-con] | Absence of near-ambient superconductivity in LuH$_{2\pm\text{x}}$N$_y$
[3] | Garisto D 2023 Physics 16 40 | Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet
[4] | Zhang S et al. 2023 arXiv:2303.11063 [cond-mat.supr-con] | Electronic and magnetic properties of Lu and LuH$_2$
[5] | Shan P et al. 2023 Chin. Phys. Lett. 40 046101 | Pressure-Induced Color Change in the Lutetium Dihydride LuH$_{2}$
[6] | Liu M et al. 2023 arXiv:2303.06554 [cond-mat.supr-con] | On parent structures of near-ambient nitrogen-doped lutetium hydride superconductor
[7] | Zhou J et al. 2019 Chem. Mater. 31 1860 | Discovery of Hidden Classes of Layered Electrides by Extensive High-Throughput Material Screening
[8] | Zhang T, Cai Z, and Chen S 2020 ACS Appl. Mater. & Interfaces 12 20680 | Chemical Trends in the Thermodynamic Stability and Band Gaps of 980 Halide Double Perovskites: A High-Throughput First-Principles Study
[9] | Lu T L et al. 2023 Mater. Futures 2 015001 | Synthesizability of transition-metal dichalcogenides: a systematic first-principles evaluation
[10] | Website: https://atomly.net |
[11] | Drozdov A et al. 2019 Nature 569 528 | Superconductivity at 250 K in lanthanum hydride under high pressures
[12] | Kong P P et al. 2021 Nat. Commun. 12 5075 | Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure
[13] | Shao M Y et al. 2021 Inorg. Chem. 60 15330 | Superconducting ScH3 and LuH3 at Megabar Pressures
[14] | Li Z et al. 2023 arXiv:2303.05117 [cond-mat.supr-con] | Superconductivity above 70 K experimentally discovered in lutetium polyhydride
[15] | Saal J E et al. 2013 JOM 65 1501 | Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
[16] | Curtarolo S et al. 2012 Comput. Mater. Sci. 58 218 | AFLOW: An automatic framework for high-throughput materials discovery
[17] | Bo T et al. 2021 J. Phys. Chem. Lett. 12 6667 | High-Throughput Screening of Element-Doped Carbon Nanotubes Toward an Optimal One-Dimensional Superconductor
[18] | Jia H et al. 2022 Adv. Sci. 9 e2202756 | Persona of Transition Metal Ions in Solids: A Statistical Learning on Local Structures of Transition Metal Oxides
[19] | Sun W H et al. 2019 Nat. Mater. 18 732 | A map of the inorganic ternary metal nitrides
[20] | Yu Z et al. 2022 Phys. Rev. B 105 214517 | Superconductive materials with -like structures from data-driven screening
[21] | Jiang Y T et al. 2022 Chin. Phys. Lett. 39 047402 | Screening Promising CsV3 Sb5 -Like Kagome Materials from Systematic First-Principles Evaluation
[22] | Werhahn D et al. 2022 Z. Naturforsch. B 77 757 | The kagomé metals RbTi3 Bi5 and CsTi3 Bi5
[23] | Yang H et al. 2022 arXiv:2211.12264 [cond-mat.supr-con] | Superconductivity and orbital-selective nematic order in a new titanium-based kagome metal CsTi3Bi5
[24] | Ong S P et al. 2008 Chem. Mater. 20 1798 | Li−Fe−P−O2 Phase Diagram from First Principles Calculations
[25] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[26] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[27] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[28] | Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245 | Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
[29] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[30] | Liang Y Z et al. 2023 Sci. Chin. Mater. 66 343 | A universal model for accurately predicting the formation energy of inorganic compounds
[31] | de Jong M et al. 2015 Sci. Data 2 150009 | Charting the complete elastic properties of inorganic crystalline compounds
[32] | Jain A et al. 2013 APL Mater. 1 011002 | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
[33] | Kirby R J, Scholes G D, and Schoop L M 2022 J. Phys. Chem. Lett. 13 838 | Square-Net Topological Semimetals: How Spectroscopy Furthers Understanding and Control
[34] | Johannsen J C et al. 2013 Phys. Rev. Lett. 111 027403 | Direct View of Hot Carrier Dynamics in Graphene