[1] | Cabra D, Honecker A, and Pujol P 2012 Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics (Berlin: Springer) vol 843 |
[2] | Wen X G 2007 Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford: Oxford University Press) |
[3] | Marino E C 2017 Quantum Field Theory Approach to Condensed Matter Physics (Cambridge University Press, Cambridge) |
[4] | Berlinsky A J and Harris A B 2019 The Ising Model: Exact Solutions (Berlin: Springer International Publishing) p 441 |
[5] | Dukelsky J, Pittel S, and Sierra G 2004 Rev. Mod. Phys. 76 643 | Colloquium : Exactly solvable Richardson-Gaudin models for many-body quantum systems
[6] | Lieb E H and F Y W 1968 Phys. Rev. Lett. 20 1445 | Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension
[7] | Qiao Y, Sun P, Xin Z, Cao J, and Yang W L 2020 J. Phys. A 53 075205 | Exact solution of an integrable anisotropic $\boldsymbol{J_1-J_2}$ spin chain model
[8] | Zou H Y, Zhao E, Guan X W, and Liu W V 2019 Phys. Rev. Lett. 122 180401 | Exactly Solvable Points and Symmetry Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice
[9] | Hirsch J E, Sugar R L, Scalapino D J, and Blankenbecler R 1982 Phys. Rev. B 26 5033 | Monte Carlo simulations of one-dimensional fermion systems
[10] | Sandvik A W 1997 Phys. Rev. B 56 11678 | Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model
[11] | Huggins W J, O'Gorman B A, Rubin N C, Reichman D R, Babbush R, and Lee J 2022 Nature 603 416 | Unbiasing fermionic quantum Monte Carlo with a quantum computer
[12] | White S R 1992 Phys. Rev. Lett. 69 2863 | Density matrix formulation for quantum renormalization groups
[13] | White S R 1993 Phys. Rev. B 48 10345 | Density-matrix algorithms for quantum renormalization groups
[14] | Schollwöck U 2005 Rev. Mod. Phys. 77 259 | The density-matrix renormalization group
[15] | Schollwöck U 2011 Ann. Phys. 326 96 | The density-matrix renormalization group in the age of matrix product states
[16] | LeBlanc J P F, Antipov A E, Becca F et al. (Simons Collaboration) 2015 Phys. Rev. X 5 041041 | Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms
[17] | Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003 | Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
[18] | Stoudenmire E and White S R 2012 Annu. Rev. Condens. Matter Phys. 3 111 | Studying Two-Dimensional Systems with the Density Matrix Renormalization Group
[19] | Stoudenmire E M, Wagner L O, White S R, and Burke K 2012 Phys. Rev. Lett. 109 056402 | One-Dimensional Continuum Electronic Structure with the Density-Matrix Renormalization Group and Its Implications for Density-Functional Theory
[20] | Hida K 1999 Phys. Rev. Lett. 83 3297 | Density Matrix Renormalization Group Study of the Haldane Phase in Random One-Dimensional Antiferromagnets
[21] | Nakano H, Minami Y, and Sasa S I 2021 Phys. Rev. Lett. 126 160604 | Long-Range Phase Order in Two Dimensions under Shear Flow
[22] | Verzhbitskiy I A, Voiry D, Chhowalla M, and Eda G 2020 2D Mater. 7 035013 | Disorder-driven two-dimensional quantum phase transitions in Li x MoS2
[23] | Astrakharchik G E, Kurbakov I L, Sychev D V, Fedorov A K, and Lozovik Y E 2021 Phys. Rev. B 103 L140101 | Quantum phase transition of a two-dimensional quadrupolar system
[24] | Dalla Piazza B, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A, and Rønnow H M 2015 Nat. Phys. 11 62 | Fractional excitations in the square-lattice quantum antiferromagnet
[25] | Ludwig A W W, Poilblanc D, Trebst S, and Troyer M 2011 New J. Phys. 13 045014 | Two-dimensional quantum liquids from interacting non-Abelian anyons
[26] | Brooks M, Lemeshko M, Lundholm D, and Yakaboylu E 2021 Phys. Rev. Lett. 126 015301 | Molecular Impurities as a Realization of Anyons on the Two-Sphere
[27] | Han C, Iftikhar Z, Kleeorin Y, Anthore A, Pierre F, Meir Y, Mitchell A K, and Sela E 2022 Phys. Rev. Lett. 128 146803 | Fractional Entropy of Multichannel Kondo Systems from Conductance-Charge Relations
[28] | Arovas D, Schrieffer J R, and Wilczek F 1984 Phys. Rev. Lett. 53 722 | Fractional Statistics and the Quantum Hall Effect
[29] | Halperin B I 1984 Phys. Rev. Lett. 52 1583 | Statistics of Quasiparticles and the Hierarchy of Fractional Quantized Hall States
[30] | Wilczek F 1982 Phys. Rev. Lett. 49 957 | Quantum Mechanics of Fractional-Spin Particles
[31] | Liang S D and Pang H B 1994 Phys. Rev. B 49 9214 | Approximate diagonalization using the density matrix renormalization-group method: A two-dimensional-systems perspective
[32] | Östlund S and Rommer S 1995 Phys. Rev. Lett. 75 3537 | Thermodynamic Limit of Density Matrix Renormalization
[33] | Plenio M B, Eisert J, Dreißig J, and Cramer M 2005 Phys. Rev. Lett. 94 060503 | Entropy, Entanglement, and Area: Analytical Results for Harmonic Lattice Systems
[34] | Vidal G, Latorre J I, Rico E, and Kitaev A 2003 Phys. Rev. Lett. 90 227902 | Entanglement in Quantum Critical Phenomena
[35] | Srednicki M 1993 Phys. Rev. Lett. 71 666 | Entropy and area
[36] | Eisert J, Cramer M, and Plenio M B 2010 Rev. Mod. Phys. 82 277 | Colloquium : Area laws for the entanglement entropy
[37] | Orús R 2019 Nat. Rev. Phys. 1 538 | Tensor networks for complex quantum systems
[38] | Bridgeman J C and Chubb C T 2017 J. Phys. A 50 223001 | Hand-waving and interpretive dance: an introductory course on tensor networks
[39] | Lami G, Carleo G, and Collura M 2022 Phys. Rev. B 106 L081111 | Matrix product states with backflow correlations
[40] | Liu W Y, Huang Y Z, Gong S S, and Z C G 2021 Phys. Rev. B 103 235155 | Accurate simulation for finite projected entangled pair states in two dimensions
[41] | Scarpa G, Molnár A, Y G, García-Ripoll J J, Schuch N, Pérez-García D, and Iblisdir S 2020 Phys. Rev. Lett. 125 210504 | Projected Entangled Pair States: Fundamental Analytical and Numerical Limitations
[42] | Liao H J, Liu J G, Wang L, and Xiang T 2019 Phys. Rev. X 9 031041 | Differentiable Programming Tensor Networks
[43] | Hubig C 2018 SciPost Phys. 5 47 | Abelian and non-abelian symmetries in infinite projected entangled pair states
[44] | Vanderstraeten L, Burgelman L, Ponsioen B, Van Damme M, Vanhecke B, Corboz P, Haegeman J, and Verstraete F 2022 Phys. Rev. B 105 195140 | Variational methods for contracting projected entangled-pair states
[45] | Felser T, Notarnicola S, and Montangero S 2021 Phys. Rev. Lett. 126 170603 | Efficient Tensor Network Ansatz for High-Dimensional Quantum Many-Body Problems
[46] | Qian X J and Qin M P 2022 Phys. Rev. B 105 205102 | From tree tensor network to multiscale entanglement renormalization ansatz
[47] | Silvi P, Tschirsich F, Gerster M, Jünemann J, Jaschke D, Rizzi M, and Montangero S 2019 SciPost Physics Lecture Notes 8 | The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems
[48] | Cataldi G, Abedi A, Magnifico G, Notarnicola S, Pozza N D, Giovannetti V, and Montangero S 2021 Quantum 5 556 | Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency
[49] | Bridgeman J C, O'Brien A, Bartlett S D, and Doherty A C 2015 Phys. Rev. B 91 165129 | Multiscale entanglement renormalization ansatz for spin chains with continuously varying criticality
[50] | Vidal G 2008 Phys. Rev. Lett. 101 110501 | Class of Quantum Many-Body States That Can Be Efficiently Simulated
[51] | Evenbly G and Vidal G 2009 Phys. Rev. Lett. 102 180406 | Entanglement Renormalization in Two Spatial Dimensions
[52] | Vidal G 2007 Phys. Rev. Lett. 99 220405 | Entanglement Renormalization
[53] | Xie Z Y, Chen J, Yu J F, Kong X, Normand B, and Xiang T 2014 Phys. Rev. X 4 011025 | Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States
[54] | Verstraete F, Wolf M M, Perez-Garcia D, and Cirac J I 2006 Phys. Rev. Lett. 96 220601 | Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States
[55] | Evenbly G and Vidal G 2010 Phys. Rev. Lett. 104 187203 | Frustrated Antiferromagnets with Entanglement Renormalization: Ground State of the Spin- Heisenberg Model on a Kagome Lattice
[56] | Corboz P and Mila F 2014 Phys. Rev. Lett. 112 147203 | Crystals of Bound States in the Magnetization Plateaus of the Shastry-Sutherland Model
[57] | Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, and Xiang T 2017 Phys. Rev. Lett. 118 137202 | Gapless Spin-Liquid Ground State in the Kagome Antiferromagnet
[58] | Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, and Chan G K L 2017 Science 358 1155 | Stripe order in the underdoped region of the two-dimensional Hubbard model
[59] | Liu W Y, Gong S S, Y B L, Poilblanc D, Chen W Q, and Z C G 2022 Sci. Bull. 67 1034 | Gapless quantum spin liquid and global phase diagram of the spin-1/2 square antiferromagnetic Heisenberg model
[60] | Lubasch M, Cirac J I, and nuls M C B 2014 Phys. Rev. B 90 064425 | Algorithms for finite projected entangled pair states
[61] | Xie Z Y, Liao H J, Huang R Z, Xie H D, Chen J, Liu Z Y, and Xiang T 2017 Phys. Rev. B 96 045128 | Optimized contraction scheme for tensor-network states
[62] | Fishman M T, Vanderstraeten L, Zauner-Stauber V, Haegeman J, and Verstraete F 2018 Phys. Rev. B 98 235148 | Faster methods for contracting infinite two-dimensional tensor networks
[63] | Qin M P 2020 Phys. Rev. B 102 125143 | Combination of tensor network states and Green's function Monte Carlo
[64] | Gong S S, Zhu W, Sheng D N, Motrunich O I, and Fisher M P A 2014 Phys. Rev. Lett. 113 027201 | Plaquette Ordered Phase and Quantum Phase Diagram in the Spin- Square Heisenberg Model
[65] | Yan S, Huse D A, and White S R 2011 Science 332 1173 | Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet
[66] | Qin M, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R, and S. Zhang (Simons Collaboration on the Many-Electron Problem) 2020 Phys. Rev. X 10 031016 | Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model
[67] | Jiang H C and Kivelson S A 2021 Phys. Rev. Lett. 127 097002 | High Temperature Superconductivity in a Lightly Doped Quantum Spin Liquid
[68] | Gong S S, Zhu W, and Sheng D N 2021 Phys. Rev. Lett. 127 097003 | Robust -Wave Superconductivity in the Square-Lattice Model
[69] | Jiang S, Scalapino D J, and White S R 2021 Proc. Natl. Acad. Sci. USA 118 e2109978118 | Ground-state phase diagram of the t-t ′ -J model
[70] | Ran S J 2020 Phys. Rev. A 101 032310 | Encoding of matrix product states into quantum circuits of one- and two-qubit gates
[71] | By contracting the additional disentangler layer in Fig. 1(c) into the original MPS wave-function, the effective bond dimension for the resulting MPS is much larger than the original MPS. Thus, the FAMPS is a more entangled wave-function than the MPS. |
[72] | Evenbly G and Vidal G 2009 Phys. Rev. B 79 144108 | Algorithms for entanglement renormalization
[73] | Xiang T, Lou J, and Z S 2001 Phys. Rev. B 64 104414 | Two-dimensional algorithm of the density-matrix renormalization group
[74] | We can still easily find a vertical cut which crosses only one bond, but the number of these cuts is smaller |
[75] | Syljuåsen O F and Sandvik A W 2002 Phys. Rev. E 66 046701 | Quantum Monte Carlo with directed loops
[76] | The calculation of SSE QMC is performed with IsingMonteCarlo package at https://github.com/Renmusxd/IsingMonteCarlo |
[77] | Singh S, Pfeifer R N C, and Vidal G 2011 Phys. Rev. B 83 115125 | Tensor network states and algorithms in the presence of a global U(1) symmetry
[78] | Choo K, Neupert T, and Carleo G 2019 Phys. Rev. B 100 125124 | Two-dimensional frustrated model studied with neural network quantum states
[79] | Nomura Y and Imada M 2021 Phys. Rev. X 11 031034 | Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy
[80] | Hu W J, Becca F, Parola A, and Sorella S 2013 Phys. Rev. B 88 060402 | Direct evidence for a gapless spin liquid by frustrating Néel antiferromagnetism
[81] | Paeckel S, Köhler T, Swoboda A, Manmana S R, Schollwöck U, and Hubig C 2019 Ann. Phys. 411 167998 | Time-evolution methods for matrix-product states
[82] | Bañuls M C, Hastings M B, Verstraete F, and Cirac J I 2009 Phys. Rev. Lett. 102 240603 | Matrix Product States for Dynamical Simulation of Infinite Chains
[83] | White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401 | Real-Time Evolution Using the Density Matrix Renormalization Group
[84] | Gray J 2018 J. Open Source Software 3 819 | quimb: A python package for quantum information and many-body calculations
[85] | The $SU(2)$ symmetry code is developed with TensorKit package at https://github.com/Jutho/TensorKit.jl |