[1] | Kohn W 1967 Phys. Rev. Lett. 19 439 | Excitonic Phases
[2] | Eisenstein J P and MacDonald A H 2004 Nature 432 691 | Bose–Einstein condensation of excitons in bilayer electron systems
[3] | Butov L V 2004 J. Phys.: Condens. Matter 16 R1577 | Condensation and pattern formation in cold exciton gases in coupled quantum wells
[4] | Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, Zhuang W, Zhang G Y, and Zheng J R 2016 Nat. Commun. 7 12512 | Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures
[5] | Combescot M, Combescot R, and Dubin F 2017 Rep. Prog. Phys. 80 066501 | Bose–Einstein condensation and indirect excitons: a review
[6] | Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G, Reichman D R, and Korn T 2018 Nat. Phys. 14 801 | Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures
[7] | Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, and Xu X 2018 Nat. Nanotechnol. 13 1004 | Interlayer valley excitons in heterobilayers of transition metal dichalcogenides
[8] | Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, and Urbaszek B 2018 Rev. Mod. Phys. 90 021001 | Colloquium : Excitons in atomically thin transition metal dichalcogenides
[9] | Wang Z F, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, and Mak K F 2019 Nature 574 76 | Evidence of high-temperature exciton condensation in two-dimensional atomic double layers
[10] | Zenker B, Ihle D, Bronold F X, and Fehske H 2012 Phys. Rev. B 85 121102R | Electron-hole pair condensation at the semimetal-semiconductor transition: A BCS-BEC crossover scenario
[11] | Di Salvo F J, Moncton D E, and Waszczak J V 1976 Phys. Rev. B 14 4321 | Electronic properties and superlattice formation in the semimetal
[12] | Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kallane M, Mathias S, Kipp L, Rossnagel K, and Bauer M 2011 Nature 471 490 | Collapse of long-range charge order tracked by time-resolved photoemission at high momenta
[13] | Hedayat H, Sayers C J, Bugini D, Dallera C, Wolverson D, Batten T, Karbassi S, Friedemann S, Cerullo G, van Wezel J, Clark S R, Carpene E, and Como E D 2019 Phys. Rev. Res. 1 023029 | Excitonic and lattice contributions to the charge density wave in revealed by a phonon bottleneck
[14] | Zunger A and Freeman A J 1978 Phys. Rev. B 17 1839 | Band structure and lattice instability of Ti
[15] | Holt M, Zschack P, Hong H, Chou M Y, and Chiang T C 2001 Phys. Rev. Lett. 86 3799 | X-Ray Studies of Phonon Softening in
[16] | Kidd T E, Miller T, Chou M Y, and Chiang T C 2002 Phys. Rev. Lett. 88 226402 | Electron-Hole Coupling and the Charge Density Wave Transition in
[17] | Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H, and Forro L 2007 Phys. Rev. Lett. 99 146403 | Evidence for an Excitonic Insulator Phase in
[18] | Li G, Hu W Z, Qian D, Hsieh D, Hasan M Z, Morosan E, Cava R J, and Wang N L 2007 Phys. Rev. Lett. 99 027404 | Semimetal-to-Semimetal Charge Density Wave Transition in
[19] | Ishioka J, Liu Y H, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M, and Tanda S 2010 Phys. Rev. Lett. 105 176401 | Chiral Charge-Density Waves
[20] | Weber F, Rosenkranz S, Castellan J P, Osborn R, Karapetrov G, Hott R, Heid R, Bohnen K P, and Alatas A 2011 Phys. Rev. Lett. 107 266401 | Electron-Phonon Coupling and the Soft Phonon Mode in
[21] | Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T, and Takahashi T 2016 ACS Nano 10 1341 | Unconventional Charge-Density-Wave Transition in Monolayer 1 T -TiSe2
[22] | Fu Z G, Hu Z Y, Yang Y, Lu Y, Zheng F W, and Zhang P 2016 RSC Adv. 6 76972 | Modulation of doping and biaxial strain on the transition temperature of the charge density wave transition in 1T-TiSe2
[23] | Hellgren M, Baima J, Bianco R, Calandra M, Mauri F, and Wirtz L 2017 Phys. Rev. Lett. 119 176401 | Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in
[24] | Kolekar S, Bonilla M, Ma Y J, Diaz H C, and Batzill M 2018 2D Mater. 5 015006 | Layer- and substrate-dependent charge density wave criticality in 1T–TiSe2
[25] | Zhang K W, Yang C L, Lei B, Lu P C, Li X B, Jia Z Y, Song Y H, Sun J, Chen X H, Li J X, and Li S C 2018 Sci. Bull. 63 426 | Unveiling the charge density wave inhomogeneity and pseudogap state in 1 T -TiSe 2
[26] | Lian C, Zhang S J, Hu S Q, Guan M X, and Meng S 2020 Nat. Commun. 11 43 | Ultrafast charge ordering by self-amplified exciton–phonon dynamics in TiSe2
[27] | Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, van Wezel J, and Abbamonte P 2017 Science 358 1314 | Signatures of exciton condensation in a transition metal dichalcogenide
[28] | Stirling W G, Dorner B, Cheeke J D N, and Revelli J 1976 Solid State Commun. 18 931 | Acoustic phonons in the transition-metal dichalcogenide layer compound, TiSe2
[29] | Peng J P, Guan J Q, Zhang H M, Song C L, Wang L L, He K, Xue Q K, and Ma X C 2015 Phys. Rev. B 91 121113 | Molecular beam epitaxy growth and scanning tunneling microscopy study of ultrathin films
[30] | Yan S C, Iaia D, Morosan E, Fradkin E, Abbamonte P, and Madhavan V 2017 Phys. Rev. Lett. 118 106405 | Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated
[31] | Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, and Chiang T C 2015 Nat. Commun. 6 8943 | Charge density wave transition in single-layer titanium diselenide
[32] | Chen P, Chan Y H, Won M H, Fang X Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, and Chiang T C 2016 Nano Lett. 16 6331 | Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe2
[33] | Cuk T, Lu D H, Zhou X J, Shen Z X, Devereaux T P, and Nagaosa N 2005 Phys. Status Solidi B 242 11 | A review of electron-phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES)
[34] | Monney G, Monney C, Hildebrand B, Aebi P, and Beck H 2015 Phys. Rev. Lett. 114 086402 | Impact of Electron-Hole Correlations on the Electronic Structure
[35] | Zhao J, Lee K, Li J, Lioi D B, Karapetrov G, Trivedi N, and Chatterjee U 2019 Phys. Rev. B 100 045106 | Spectroscopic fingerprints of many-body renormalization in
[36] | Hong J H, Senga R, Pichler T, and Suenaga K 2020 Phys. Rev. Lett. 124 087401 | Probing Exciton Dispersions of Freestanding Monolayer by Momentum-Resolved Electron Energy-Loss Spectroscopy
[37] | Li J X and Gong C D 2002 Phys. Rev. B 66 014506 | Doping dependence of the resonance peak and incommensuration in high- superconductors
[38] | Zenker B, Ihle D, Bronold F X, and Fehske H 2011 Phys. Rev. B 83 235123 | Slave-boson field fluctuation approach to the extended Falicov-Kimball model: Charge, orbital, and excitonic susceptibilities
[39] | Pasquier D and Yazyev O V 2018 Phys. Rev. B 98 235106 | Excitonic effects in two-dimensional from hybrid density functional theory
[40] | Lian C, Ali Z A, and Wong B M 2019 Phys. Rev. B 100 205423 | Charge density wave hampers exciton condensation in
[41] | Park S, Mutz N, Schultz T, Blumstengel S, Han A, Aljarb A, Li L J, List-Kratochvil E J W, Amsalem P, and Koch N 2018 2D Mater. 5 025003 | Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates
[42] | Qiu D Y, da Jornada F H, and Louie S G 2017 Nano Lett. 17 4706 | Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus
[43] | Drüppel M, Deilmann T, Krüger P, and Rohlfing M 2017 Nat. Commun. 8 2117 | Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer
[44] | Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schuller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R, and Chernikov A 2017 Nat. Commun. 8 15251 | Coulomb engineering of the bandgap and excitons in two-dimensional materials
[45] | Man M K L, Madeo J, Sahoo C, Xie K, Campbell M, Pareek V, Karmakar A, Wong E L, Al-Mahboob A, Chan N S, Bacon D R, Zhu X, Abdelrasoul M M M, Li X, Heinz T F, Jornada F H D, Cao T, and Dani K M 2021 Sci. Adv. 7 eabg0192 | Experimental measurement of the intrinsic excitonic wave function
[46] | Perfetto E, Sangalli D, Marini A, and Stefanucci G 2019 Phys. Rev. Mater. 3 124601 | Pump-driven normal-to-excitonic insulator transition: Josephson oscillations and signatures of BEC-BCS crossover in time-resolved ARPES