[1] | Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press) |
[2] | Vojta M 2003 Rep. Prog. Phys. 66 2069 | Quantum phase transitions
[3] | Yang C N and Lee T D 1952 Phys. Rev. 87 404 | Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation
[4] | Lee T D and Yang C N 1952 Phys. Rev. 87 410 | Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model
[5] | Peng X H, Zhou H, Wei B B, Cui J, J D, and Liu R B 2015 Phys. Rev. Lett. 114 010601 | Experimental Observation of Lee-Yang Zeros
[6] | Brandner K, Maisi V F, Pekola J P, Garrahan J P, and Flindt C 2017 Phys. Rev. Lett. 118 180601 | Experimental Determination of Dynamical Lee-Yang Zeros
[7] | Fisher M E 1965 Statistical Physics, Weak Interactions, Field Theory, Lectures in Theoretical Physics (Boulder: University of Colorado Press) vol VIIC |
[8] | van Saarloos W and Kurtze D A 1984 J. Phys. A 17 1301 | Location of zeros in the complex temperature plane: absence of Lee-Yang theorem
[9] | Bena I, Droz M, and Lipowski A 2005 Int. J. Mod. Phys. B 19 4269 | STATISTICAL MECHANICS OF EQUILIBRIUM AND NONEQUILIBRIUM PHASE TRANSITIONS: THE YANG–LEE FORMALISM
[10] | Denbleyker A, Liu Y, Meurice Y, Qin M P, Xiang T, Xie Z Y, J F Y, and Zou H 2014 Phys. Rev. D 89 016008 | Controlling sign problems in spin models using tensor renormalization
[11] | Denbleyker A, D D, Liu Y, Meurice Y, and Zou H 2010 Phys. Rev. Lett. 104 251601 | Fisher’s Zeros as the Boundary of Renormalization Group Flows in Complex Coupling Spaces
[12] | Meurice Y and Zou H 2011 Phys. Rev. D 83 056009 | Complex renormalization group flows for 2D nonlinear sigma models
[13] | Liu Y Z and Meurice Y 2011 Phys. Rev. D 83 096008 | Lines of Fisher’s zeros as separatrices for complex renormalization group flows
[14] | Basu S, Arovas D P, Gopalakrishnan S, Hooley C A, and Oganesyan V 2022 Phys. Rev. Res. 4 013018 | Fisher zeros and persistent temporal oscillations in nonunitary quantum circuits
[15] | Heyl M, Polkovnikov A, and Kehrein S 2013 Phys. Rev. Lett. 110 135704 | Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model
[16] | Andraschko F and Sirker J 2014 Phys. Rev. B 89 125120 | Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach
[17] | Zvyagin A 2016 Low Temp. Phys. 42 971 | Dynamical quantum phase transitions (Review Article)
[18] | Heyl M 2018 Rep. Prog. Phys. 81 054001 | Dynamical quantum phase transitions: a review
[19] | Onsager L 1944 Phys. Rev. 65 117 | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition
[20] | Kaufman B 1949 Phys. Rev. 76 1232 | Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis
[21] | Suzuki M 1976 Prog. Theor. Phys. 56 1454 | Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations
[22] | Pfeuty P 1970 Ann. Phys. 57 79 | The one-dimensional Ising model with a transverse field
[23] | Białończyk M, Gómez-Ruiz F, and Campo A D 2021 SciPost Phys. 11 013 | Exact thermal properties of free-fermionic spin chains
[24] | Jones G L 1966 J. Math. Phys. 7 2000 | Complex Temperatures and Phase Transitions
[25] | Quan H T, Song Z, Liu X F, Zanardi P, and Sun C P 2006 Phys. Rev. Lett. 96 140604 | Decay of Loschmidt Echo Enhanced by Quantum Criticality
[26] | Banuls M C, Heller M P, Jansen K, Knaute J, and Svensson V 2022 arXiv:2206.10528 [hep-th] | A quantum information perspective on meson melting
[27] | Wu J D, Zhu L J, and Si Q M 2018 Phys. Rev. B 97 245127 | Crossovers and critical scaling in the one-dimensional transverse-field Ising model
[28] | Coldea R, Tennant D, Wheeler E, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P, and Kiefer K 2010 Science 327 177 | Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry
[29] | Zamolodchikov A B 1989 Int. J. Mod. Phys. A 04 4235 | INTEGRALS OF MOTION AND S-MATRIX OF THE (SCALED) T = T c ISING MODEL WITH MAGNETIC FIELD
[30] | Zhang Z, Amelin K, Wang X, Zou H, Yang J, Nagel U, T R O O, Dey T, Nugroho A A, Lorenz T, Wu J, and Wang Z 2020 Phys. Rev. B 101 220411 | Observation of particles in an Ising chain antiferromagnet
[31] | Zou H Y, Cui Y, Wang X et al. 2021 Phys. Rev. Lett. 127 077201 | Spectra of Quasi-One-Dimensional Antiferromagnet under Transverse Field
[32] | Orús R 2014 Ann. Phys. 349 117 | A practical introduction to tensor networks: Matrix product states and projected entangled pair states
[33] | Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003 | Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
[34] | Meurice Y, Sakai R, and Unmuth-Yockey J 2022 Rev. Mod. Phys. 94 025005 | Tensor lattice field theory for renormalization and quantum computing
[35] | Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P, and Xiang T 2012 Phys. Rev. B 86 045139 | Coarse-graining renormalization by higher-order singular value decomposition
[36] | Amelin K, Engelmayer J, Viirok J et al. 2020 Phys. Rev. B 102 104431 | Experimental observation of quantum many-body excitations of symmetry in the Ising chain ferromagnet
[37] | Liu X F, Fu Y F, Yu W Q, Yu J F, and Xie Z Y 2022 Chin. Phys. Lett. 39 067502 | Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models
[38] | Yang L P, Fu Y F, Xie Z Y, and Xiang T 2022 arXiv:2210.09896 [cond-mat.stat-mech] | Efficient calculation of three-dimensional tensor networks
[39] | Tong P Q and Liu X X 2006 Phys. Rev. Lett. 97 017201 | Lee-Yang Zeros of Periodic and Quasiperiodic Anisotropic Chains in a Transverse Field
[40] | Chen X, Gu Z C, Liu Z X, and Wen X G 2013 Phys. Rev. B 87 155114 | Symmetry protected topological orders and the group cohomology of their symmetry group
[41] | Zou H Y, Zhao E H, Guan X W, and Liu W V 2019 Phys. Rev. Lett. 122 180401 | Exactly Solvable Points and Symmetry Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice
[42] | Zheng Q, Li X, and Zou H 2020 Phys. Rev. B 101 165131 | Symmetry-protected topological phase transitions and robust chiral order on a tunable zigzag lattice
[43] | Michal V P, Aleiner I L, Altshuler B L, and Shlyapnikov G V 2016 Proc. Natl. Acad. Sci. USA 113 E4455 | Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons
[44] | Zhang K L and Song Z 2021 Phys. Rev. Lett. 126 116401 | Quantum Phase Transition in a Quantum Ising Chain at Nonzero Temperatures
[45] | Yang Y T and Luo H G 2023 Chin. Phys. Lett. 40 020502 | Characterizing Superradiant Phase of the Quantum Rabi Model
[46] | Senthil T, Vishwanath A, Balents L, Sachdev S, and Fisher M 2004 Science 303 1490 | Deconfined Quantum Critical Points
[47] | Wei B B, Chen S W, Po H C, and Liu R B 2014 Sci. Rep. 4 5202 | Phase transitions in the complex plane of physical parameters