[1] | Onsager L 1931 Phys. Rev. 37 405 | Reciprocal Relations in Irreversible Processes. I.
[2] | Onsager L 1931 Phys. Rev. 38 2265 | Reciprocal Relations in Irreversible Processes. II.
[3] | Bustamante C, Liphardt J, and Ritort F 2005 Phys. Today 58 43 | The Nonequilibrium Thermodynamics of Small Systems
[4] | Kosloff R 2013 Entropy 15 2100 | Quantum Thermodynamics: A Dynamical Viewpoint
[5] | Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1 | Fundamental aspects of steady-state conversion of heat to work at the nanoscale
[6] | Kurizki G and Kofman A G 2022 Thermodynamics and Control of Open Quantum Systems (Cambridge: Cambridge University Press) |
[7] | Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1 | Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application
[8] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501 | Active Thermal Wave Cloak
[9] | Li Y and Li J X 2021 Chin. Phys. Lett. 38 030501 | Advection and Thermal Diode
[10] | Quan H T, Liu Y X, Sun C P, and Nori F 2007 Phys. Rev. E 76 031105 | Quantum thermodynamic cycles and quantum heat engines
[11] | Scully M O, Chapin K R, Dorfman K E, and Svidzinsky A 2011 Proc. Natl. Acad. Sci. USA 108 15097 | Quantum heat engine power can be increased by noise-induced coherence
[12] | Scully M O, Zubairy M S, Agarwal G S, and Walther H 2003 Science 299 862 | Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence
[13] | Levy A and Kosloff R 2012 Phys. Rev. Lett. 108 070604 | Quantum Absorption Refrigerator
[14] | Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123 | Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation
[15] | Friedman H M, Agarwalla B K, and Segal D 2018 New J. Phys. 20 083026 | Quantum energy exchange and refrigeration: a full-counting statistics approach
[16] | Yu C S, Guo B Q, and Liu T 2019 Opt. Express 27 6863 | Quantum self-contained refrigerator in terms of the cavity quantum electrodynamics in the weak internal-coupling regime
[17] | Giri S K and Goswami H P 2017 Phys. Rev. E 96 052129 | Geometric phaselike effects in a quantum heat engine
[18] | Brandner K and Saito K 2020 Phys. Rev. Lett. 124 040602 | Thermodynamic Geometry of Microscopic Heat Engines
[19] | Hino Y and Hayakawa H 2021 Phys. Rev. Res. 3 013187 | Geometrical formulation of adiabatic pumping as a heat engine
[20] | Wang Z, Wang L Q, Chen J Z, Wang C, and Ren J 2022 Front. Phys. 17 13201 | Geometric heat pump: Controlling thermal transport with time-dependent modulations
[21] | Manzano G, Sanchez R, Silva R, Haack G, Brask J B, Brunner N, and Potts P P 2020 Phys. Rev. Res. 2 043302 | Hybrid thermal machines: Generalized thermodynamic resources for multitasking
[22] | Pekola J P and Karimi B 2021 Rev. Mod. Phys. 93 041001 | Colloquium : Quantum heat transport in condensed matter systems
[23] | Yang C, Wei X R, Sheng J T, and H B W 2020 Nat. Commun. 11 4656 | Phonon heat transport in cavity-mediated optomechanical nanoresonators
[24] | Horowitz J M and Gingrich T R 2020 Nat. Phys. 16 15 | Thermodynamic uncertainty relations constrain non-equilibrium fluctuations
[25] | Liu J J and Segal D 2021 Phys. Rev. E 103 032138 | Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators
[26] | Lu J C, Wang Z, Peng J B, Wang C, Jiang J H, and Ren J 2022 Phys. Rev. B 105 115428 | Geometric thermodynamic uncertainty relation in a periodically driven thermoelectric heat engine
[27] | Liu F and Su S 2020 Phys. Rev. E 101 062144 | Stochastic Floquet quantum heat engines and stochastic efficiencies
[28] | Lu J C, Wang R Q, Wang C, and Jiang J H 2020 Phys. Rev. B 102 125405 | Brownian thermal transistors and refrigerators in mesoscopic systems
[29] | Wang R Q, Wang C, Lu J C, and Jiang J H 2022 Adv. Phys.: X 7 2082317 | Inelastic thermoelectric transport and fluctuations in mesoscopic systems
[30] | Aron C, Kulkarni M, and Tureci H E 2014 Phys. Rev. A 90 062305 | Steady-state entanglement of spatially separated qubits via quantum bath engineering
[31] | Kulkarni M, Cotlet O, and Tureci H E 2014 Phys. Rev. B 90 125402 | Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond
[32] | Lu J C, Wang R Q, Ren J, Kulkarni M, and Jiang J H 2019 Phys. Rev. B 99 035129 | Quantum-dot circuit-QED thermoelectric diodes and transistors
[33] | Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, and Pekola J P 2018 Nat. Phys. 14 991 | Tunable photonic heat transport in a quantum heat valve
[34] | Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, and Pekola J P 2020 Commun. Phys. 3 40 | Heat rectification via a superconducting artificial atom
[35] | Braak D 2011 Phys. Rev. Lett. 107 100401 | Integrability of the Rabi Model
[36] | Chen Q H, Wang C, He S, Liu T, and Wang K L 2012 Phys. Rev. A 86 023822 | Exact solvability of the quantum Rabi model using Bogoliubov operators
[37] | Wang J H, He J Z, and He X 2011 Phys. Rev. E 84 041127 | Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity
[38] | Wang J H, Wu Z Q, and He J Z 2012 Phys. Rev. E 85 041148 | Quantum Otto engine of a two-level atom with single-mode fields
[39] | Yamamoto T and Kato T 2021 J. Phys.: Condens. Matter 33 395303 | Heat transport through a two-level system embedded between two harmonic resonators
[40] | Xu M, Stockburger J T, and Ankerhold J 2021 Phys. Rev. B 103 104304 | Heat transport through a superconducting artificial atom
[41] | Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, and Gross R 2010 Nat. Phys. 6 772 | Circuit quantum electrodynamics in the ultrastrong-coupling regime
[42] | Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2017 Nat. Phys. 13 44 | Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime
[43] | Naseem M T and Mustecaplioglu O E 2022 Phys. Rev. A 105 012201 | Antibunching via cooling by heating
[44] | Chen Z H, Che H X, Chen Z K, Wang C, and Ren J 2022 Phys. Rev. Res. 4 013152 | Tuning nonequilibrium heat current and two-photon statistics via composite qubit-resonator interaction
[45] | Wang F Y, Lu J C, Wang Z, Duan L W, Wang C, and Ren J 2022 Front. Phys. 10 3389 | Nonequilibrium thermal transport in the two-mode qubit-resonator system
[46] | Denis Z, Biella A, Favero I, and Ciuti C 2020 Phys. Rev. Lett. 124 083601 | Permanent Directional Heat Currents in Lattices of Optomechanical Resonators
[47] | Ma K K W 2020 Phys. Rev. A 102 053709 | Multiphoton resonance and chiral transport in the generalized Rabi model
[48] | Zhang Y Y, Hu Z X, Fu L B, Luo H G, Pu H, and Zhang X F 2021 Phys. Rev. Lett. 127 063602 | Quantum Phases in a Quantum Rabi Triangle
[49] | Arnardottir K B, Moilanen A J, Strashko A, Torma P, and Keeling J 2020 Phys. Rev. Lett. 125 233603 | Multimode Organic Polariton Lasing
[50] | Li B W, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 | Negative differential thermal resistance and thermal transistor
[51] | Li N B, Ren J, Wang L, Zhang G, Hanggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045 | Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond
[52] | Greentree A D, Tahan C, Cole J H, and Hollenberg L C L 2006 Nat. Phys. 2 856 | Quantum phase transitions of light
[53] | Wang C, Wang L Q, and Ren J 2021 Chin. Phys. Lett. 38 010501 | Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States
[54] | Beaudoin F, Gambetta J M, and Blais A 2011 Phys. Rev. A 84 043832 | Dissipation and ultrastrong coupling in circuit QED
[55] | Le Boité A 2020 Adv. Quantum Technol. 3 1900140 | Theoretical Methods for Ultrastrong Light–Matter Interactions
[56] | Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific) |
[57] | Chen Q H, Zhang Y Y, Liu T, and Wang K L 2008 Phys. Rev. A 78 051801 | Numerically exact solution to the finite-size Dicke model
[58] | Ren J, Zhu J X, Gubernatis J E, Wang C, and B W L 2012 Phys. Rev. B 85 155443 | Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions