[1] | Hawking S W 1974 Nature 248 30 | Black hole explosions?
[2] | Susskind L and Lindesay J 2004 An Introduction to Black Holes, Information and the String Theory Revolution (Singapore: World Scientific) chap 3 |
[3] | Vishveshwara C V 1970 Nature 227 936 | Scattering of Gravitational Radiation by a Schwarzschild Black-hole
[4] | Nollert H P 1999 Class. Quantum Grav. 16 R159 | Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars
[5] | Berti E, Cardoso V, and Starinets A O 2009 Class. Quantum Grav. 26 163001 | Quasinormal modes of black holes and black branes
[6] | Konoplya R A and Zhidenko A 2011 Rev. Mod. Phys. 83 793 | Quasinormal modes of black holes: From astrophysics to string theory
[7] | Landau L and Lifshitz E 1977 Quantum Mechanics (Berlin: Pergamon) p 164 | Quantum Mechanics
[8] | Chandrasekhar S and Chandrasekhar S 1998 The Mathematical Theory of Black Holes (Oxford: Oxford University Press) vol 69 |
[9] | Iyer S and Will C M 1987 Phys. Rev. D 35 3621 | Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering
[10] | Unruh W G 1976 Phys. Rev. D 14 870 | Notes on black-hole evaporation
[11] | Mukhanov V and Winitzki S 2007 Introduction to Quantum Effects in Gravity (Cambridge: Cambridge University Press) | Introduction to Quantum Effects in Gravity
[12] | Betzios P, Gaddam N, and Papadoulaki O 2016 J. High Energy Phys. 2016(11) 131 | The black hole S-Matrix from quantum mechanics
[13] | Hegde S S, Subramanyan V, Bradlyn B, and Vishveshwara S 2019 Phys. Rev. Lett. 123 156802 | Quasinormal Modes and the Hawking-Unruh Effect in Quantum Hall Systems: Lessons from Black Hole Phenomena
[14] | Tian Z H, Lin Y H, Fischer U R, and Du J F 2022 Eur. Phys. J. C 82 212 | Testing the upper bound on the speed of scrambling with an analogue of Hawking radiation using trapped ions
[15] | Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102 | Observation of Gravitational Waves from a Binary Black Hole Merger
[16] | Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2017 Phys. Rev. Lett. 119 161101 | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
[17] | Unruh W G 1981 Phys. Rev. Lett. 46 1351 | Experimental Black-Hole Evaporation?
[18] | Unruh W G 1995 Phys. Rev. D 51 2827 | Sonic analogue of black holes and the effects of high frequencies on black hole evaporation
[19] | Weinfurtner S, Tedford E W, Penrice M C J, Unruh W G, and Lawrence G A 2011 Phys. Rev. Lett. 106 021302 | Measurement of Stimulated Hawking Emission in an Analogue System
[20] | Michel F and Parentani R 2014 Phys. Rev. D 90 044033 | Probing the thermal character of analogue Hawking radiation for shallow water waves?
[21] | Euvé L P, Michel F, Parentani R, and Rousseaux G 2015 Phys. Rev. D 91 024020 | Wave blocking and partial transmission in subcritical flows over an obstacle
[22] | Coutant A and Weinfurtner S 2016 Phys. Rev. D 94 064026 | The imprint of the analogue Hawking effect in subcritical flows
[23] | Visser M 1998 Class. Quantum Grav. 15 1767 | Acoustic black holes: horizons, ergospheres and Hawking radiation
[24] | Giovanazzi S 2005 Phys. Rev. Lett. 94 061302 | Hawking Radiation in Sonic Black Holes
[25] | Rousseaux G, Mathis C, MaOssa P, Philbin T G, and Leonhardt U 2008 New J. Phys. 10 053015 | Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?
[26] | Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A, and Steinhauer J 2010 Phys. Rev. Lett. 105 240401 | Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate
[27] | Steinhauer J 2016 Nat. Phys. 12 959 | Observation of quantum Hawking radiation and its entanglement in an analogue black hole
[28] | de Nova J R M, Golubkov K, Kolobov V I, and Steinhauer J 2019 Nature 569 688 | Observation of thermal Hawking radiation and its temperature in an analogue black hole
[29] | Garay L J, Anglin J R, Cirac J I, and Zoller P 2000 Phys. Rev. Lett. 85 4643 | Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates
[30] | Carusotto I, Fagnocchi S, Recati A, Balbinot R, and Fabbri A 2008 New J. Phys. 10 103001 | Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates
[31] | Philbin T G, Kuklewicz C, Robertson S, Hill S, König F, and Leonhardt U 2008 Science 319 1367 | Fiber-Optical Analog of the Event Horizon
[32] | Drori J, Rosenberg Y, Bermudez D, Silberberg Y, and Leonhardt U 2019 Phys. Rev. Lett. 122 010404 | Observation of Stimulated Hawking Radiation in an Optical Analogue
[33] | Sheng C, Liu H, Wang Y, Zhu S N, and Genov D A 2013 Nat. Photon. 7 902 | Trapping light by mimicking gravitational lensing
[34] | Shi Y H, Yang R Q, Xiang Z, Ge Z Y, Li H, Wang Y Y, Huang K, Tian Y, Song X, Zheng D, Xu K, Cai R G, and Fan H 2021 arXiv:2111.11092 [quant-ph] | On-chip black hole: Hawking radiation and curved spacetime in a superconducting quantum circuit with tunable couplers
[35] | Stone M 2013 Class. Quantum Grav. 30 085003 | An analogue of Hawking radiation in the quantum Hall effect
[36] | Fertig H A and Halperin B I 1987 Phys. Rev. B 36 7969 | Transmission coefficient of an electron through a saddle-point potential in a magnetic field
[37] | Croft J F E and Bohn J L 2014 Phys. Rev. A 89 012714 | Long-lived complexes and chaos in ultracold molecular collisions
[38] | Nichols M A, Liu Y X, Zhu L, Hu M G, Liu Y, and Ni K K 2022 Phys. Rev. X 12 011049 | Detection of Long-Lived Complexes in Ultracold Atom-Molecule Collisions
[39] | Hu M G, Liu Y, Grimes D D, Lin Y W, Gheorghe A H, Vexiau R, Bouloufa-Maafa N, Dulieu O, Rosenband T, and Ni K K 2019 Science 366 1111 | Direct observation of bimolecular reactions of ultracold KRb molecules
[40] | Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, and Ye J 2010 Science 327 853 | Quantum-State Controlled Chemical Reactions of Ultracold Potassium-Rubidium Molecules
[41] | De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P, and Ye J 2019 Science 363 853 | A degenerate Fermi gas of polar molecules
[42] | Wang Y, Julienne P, and Greene C H 2013 Few-Body Physics of Ultracold Atoms and Molecules with Long-Range Interactions, in Annual Review of Cold Atoms and Molecules (Singapore: World Scientific) chap 2 | Annual Review of Cold Atoms and Molecules
[43] | Shagam Y, Klein A, Skomorowski W, Yun R, Averbukh V, Koch C P, and Narevicius E 2015 Nat. Chem. 7 921 | Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions
[44] | Subramanyan V, Hegde S S, Vishveshwara S, and Bradlyn B 2021 Ann. Phys. 435 168470 (special issue on Philip W. Anderson) | Physics of the Inverted Harmonic Oscillator: From the lowest Landau level to event horizons
[45] | Gao B 1998 Phys. Rev. A 58 1728 | Solutions of the Schrödinger equation for an attractive potential
[46] | Gao B 1998 Phys. Rev. A 58 4222 | Quantum-defect theory of atomic collisions and molecular vibration spectra
[47] | Idziaszek Z and Julienne P S 2010 Phys. Rev. Lett. 104 113202 | Universal Rate Constants for Reactive Collisions of Ultracold Molecules
[48] | Jachymski K, Krych M, Julienne P S, and Idziaszek Z 2014 Phys. Rev. A 90 042705 | Quantum-defect model of a reactive collision at finite temperature
[49] | He M Y, Lv C W, Lin H Q, and Zhou Q 2020 Sci. Adv. 6 10.1126/sciadv.abd4699 | Universal relations for ultracold reactive molecules
[50] | de Miranda M H G, Chotia A, Neyenhuis B, Wang D, Quéméner G, Ospelkaus S, Bohn J L, Ye J, and Jin D S 2011 Nat. Phys. 7 502 | Controlling the quantum stereodynamics of ultracold bimolecular reactions
[51] | Valtolina G, Matsuda K, Tobias W G, Li J R, De Marco L, and Ye J 2020 Nature 588 239 | Dipolar evaporation of reactive molecules to below the Fermi temperature
[52] | Gregory P D, Frye M D, Blackmore J A, Bridge E M, Sawant R, Hutson J M, and Cornish S L 2019 Nat. Commun. 10 10.1038/s41467-019-11033-y | Sticky collisions of ultracold RbCs molecules
[53] | Matsuda K, Marco L D, Li J R, Tobias W G, Valtolina G, Quéméner G, and Ye J 2020 Science 370 1324 | Resonant collisional shielding of reactive molecules using electric fields
[54] | Li J R, Tobias W G, Matsuda K, Miller C, Valtolina G, de Marco L, Wang R R W, Lassablière L, Quéméner G, Bohn J L, and Ye J 2021 Nat. Phys. 17 1144 | Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas
[55] | Son H, Park J J, Lu Y K, Jamison A O, Karman T, and Ketterle W 2022 Science 375 1006 | Control of reactive collisions by quantum interference