[1] | Aad G, Abbott B, Abdallah J et al. (ATLAS collaboration) 2012 Phys. Lett. B 716 1 | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
[2] | Chatrchyan S, Khachatryan V, Sirunyan A M et al. (CMS collaboration) 2012 Phys. Lett. B 716 30 | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC
[3] | Aad G et al. (ATLAS collaboration) 2019 arXiv:1909.02845 [hep-ex] | Combined measurements of Higgs boson production and decay using up to $80$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV collected with the ATLAS experiment
[4] | Sirunyan A M, Tumasyan A, Adam W et al. (CMS collaboration) 2021 J. High Energy Phys. 2021(01) 148 | Evidence for Higgs boson decay to a pair of muons
[5] | Borriello A and Salucci P 2001 Mon. Not. Roy. Astron. Soc. 323 285 | The dark matter distribution in disc galaxies
[6] | Hoekstra H, Yee H, and Gladders M 2002 New Astron. Rev. 46 767 | Current status of weak gravitational lensing
[7] | Bennett C L, Larson D, Weiland J L, Jarosik N, Hinshaw G, Odegard N, Smith K M, Hill R S, Gold B, Halpern M, Komatsu E, Nolta M R, Page L, Spergel D N, Wollack E, Dunkley J, Kogut A, Limon M, Meyer S S, Tucker G S, and Wright E L 2013 Astrophys. J. Suppl. Ser. 208 20 | NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: FINAL MAPS AND RESULTS
[8] | Steigman G and Turner M S 1985 Nucl. Phys. B 253 375 | Cosmological constraints on the properties of weakly interacting massive particles
[9] | McDonald J 1994 Phys. Rev. D 50 3637 | Gauge singlet scalars as cold dark matter
[10] | Cline J M, Kainulainen K, Scott P, and Weniger C 2013 Phys. Rev. D 88 055025 | Update on scalar singlet dark matter
[11] | Athron P, Cornell J M, Kahlhoefer F, Mckay J, Scott P, and Wild S 2018 Eur. Phys. J. C 78 830 | Impact of vacuum stability, perturbativity and XENON1T on global fits of $\mathbb {Z}_2$ and $\mathbb {Z}_3$ scalar singlet dark matter
[12] | Aalbers J et al. (LZ collaboration) 2022 arXiv:2207.03764 [hep-ex] | First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
[13] | Das D, De B, and Mitra S 2021 Phys. Lett. B 815 136159 | Cancellation in dark matter-nucleon interactions: The role of non-standard-model-like Yukawa couplings
[14] | Bishara F, Brod J, Uttarayat P, and Zupan J 2016 J. High Energy Phys. 2016(01) 010 | Nonstandard Yukawa couplings and Higgs portal dark matter
[15] | Adhikari R, Bhat I A, Borah D, Ma E, and Nanda D 2022 Phys. Rev. D 105 035006 | Anomalous magnetic moment and Higgs coupling of the muon in a sequential U(1) gauge model with dark matter
[16] | Chiang C W, Obuchi R, and Yagyu K 2022 J. High Energy Phys. 2022(05) 070 | Dark sector as origin of light lepton mass and its phenomenology
[17] | Kowalska K and Sessolo E M 2021 Phys. Rev. D 103 115032 | Minimal models for and dark matter confront asymptotic safety
[18] | Hewett J L and Rizzo T G 1989 Phys. Rep. 183 193 | Low-energy phenomenology of superstring-inspired E6 models
[19] | Langacker P 1981 Phys. Rep. 72 185 | Grand unified theories and proton decay
[20] | Antoniadis I 1990 Phys. Lett. B 246 377 | A possible new dimension at a few TeV
[21] | Minkowski P 1977 Phys. Lett. B 67 421 | μ→eγ at a rate of one out of 109 muon decays?
[22] | Foot R, Lew H, He X G, and Joshi G C 1989 Z. Phys. C 44 441 | See-saw neutrino masses induced by a triplet of leptons
[23] | Crivellin A, Kirk F, Manzari C A, and Montull M 2020 J. High Energy Phys. 2020(12) 166 | Global electroweak fit and vector-like leptons in light of the Cabibbo angle anomaly
[24] | Kondratyev D 2022 Ph.D. Dessertation (Purdue University) |
[25] | Sirunyan A M, Tumasyan A, Adam W et al. (CMS collaboration) 2019 Phys. Rev. D 100 052003 | Search for vectorlike leptons in multilepton final states in proton-proton collisions at
[26] | Bißmann S, Hiller G, Hormigos-Feliu C, and Litim D F 2021 Eur. Phys. J. C 81 101 | Multi-lepton signatures of vector-like leptons with flavor
[27] | Bélanger G, Boudjema F, Pukhov A, and Semenov A 2009 Comput. Phys. Commun. 180 747 | Dark matter direct detection rate in a generic model with micrOMEGAs_2.2
[28] | Jarosik N, Bennett C L, Dunkley J, Gold B, Greason M R, Halpern M, Hill R S, Hinshaw G, Kogut A, and Komatsu E 2011 Astrophys. J. Suppl. Ser. 192 14 | SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS
[29] | Aghanim N et al. (Planck collaboration) 2018 arXiv:1807.06209 [astro-ph.CO] | Planck 2018 results. VI. Cosmological parameters
[30] | Aprile E et al. (XENON collaboration) 2020 arXiv:2007.08796 [physics.ins-det] | Projected WIMP Sensitivity of the XENONnT Dark Matter Experiment
[31] | Romão J C 2020 Advanced Quantum Field Theory (Instituto Superior Técnico) |
[32] | Allwicher L, Arnan P, Barducci D, and Nardecchia M 2021 J. High Energy Phys. 2021(10) 129 | Perturbative unitarity constraints on generic Yukawa interactions
[33] | Abi B, Albahri T, Al Kilani S et al. (Muon g 2 collaboration) 2021 Phys. Rev. Lett. 126 141801 | Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
[34] | Albahri T, Anastasi A, Anisenkov A et al. (Muon g 2 collaboration) 2021 Phys. Rev. D 103 072002 | Measurement of the anomalous precession frequency of the muon in the Fermilab Muon Experiment