[1] | Hiroshi K, Marcelo L, Kenneth I, and Hoi W J C 2021 United Nations, Department of Economic and Social Affairs: Economic Analysis Frontier Technology Issues: Lithium-Ion Batteries: A Pillar for a Fossil Fuel-Free Economy |
[2] | Li Q, Yu X Q, and Li H 2022 eTransportation 14 100201 | Batteries: From China's 13th to 14th Five-Year Plan
[3] | 2021 U.S. Department of Energy National Blueprint for Lithium Batteries 2021–2030 |
[4] | Edström K 2022 Battery 2030+ Inventing the Sustainable Batteries of the Future: Research Needs and Future Actions, in Roadmap paper |
[5] | Viswanathan V, Epstein A H, Chiang Y M, Takeuchi E, Bradley M, Langford J, and Winter M 2022 Nature 601 519 | The challenges and opportunities of battery-powered flight
[6] | 2021 U.S. Department of Energy's (DOE) Argonne National Laboratory White Paper: Assessment of the R&D Needs for Electric Aviation |
[7] | Li W J, Xu H Y, Yang Q, Li J M, Zhang Z Y, Wang S B, Peng J Y, Zhang B, Chen X L, and Zhang Z 2020 Energy Storage Sci. Technol. 9 448 | Development of strategies for high-energy-density lithium batteries
[8] | Louli A J, Eldesoky A, deGooyer J, Coon M, Aiken C P, Simunovic Z, Metzger M, and Dahn J R 2022 J. Electrochem. Soc. 169 40517 | Different Positive Electrodes for Anode-Free Lithium Metal Cells
[9] | Usubelli C, Besli M M, Kuppan S, Jiang N N, Metzger M, Dinia A, Christensen J, and Gorlin Y 2020 J. Electrochem. Soc. 167 080514 | Understanding the Overlithiation Properties of LiNi0.6 Mn0.2 Co0.2 O2 Using Electrochemistry and Depth-Resolved X-ray Absorption Spectroscopy
[10] | Lin D C, Liu Y Y, and Cui Y 2017 Nat. Nanotechnol. 12 194 | Reviving the lithium metal anode for high-energy batteries
[11] | Yu L L, Tian Y X, Xiao X, Hou C, Xing Y R, Si Y H, Lu H, and Zhao Y J 2021 J. Electrochem. Soc. 168 050516 | Investigation on the Overlithiation Mechanism of LiCoO2 Cathode for Lithium Ion Batteries
[12] | Xu K 2004 Chem. Rev. 104 4303 | Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
[13] | Cheng X B, Zhang R, Zhao C Z, and Zhang Q 2017 Chem. Rev. 117 10403 | Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
[14] | Xu K 2014 Chem. Rev. 114 11503 | Electrolytes and Interphases in Li-Ion Batteries and Beyond
[15] | Kuang Y D, Chen C J, Kirsch D, and Hu L B 2019 Adv. Energy Mater. 9 1901457 | Thick Electrode Batteries: Principles, Opportunities, and Challenges
[16] | Niu C J, Lee H K, Chen S R, Li Q Y, Du J, Xu W, Zhang J G, Whittingham M S, Xiao J, and Liu J 2019 Nat. Energy 4 551 | High-energy lithium metal pouch cells with limited anode swelling and long stable cycles
[17] | Eldesoky A, Louli A J, Benson A, and Dahn J R 2021 J. Electrochem. Soc. 168 120508 | Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations
[18] | Pham M T M, Darst J J, Walker W Q, Heenan T M M, Patel D, Iacoviello F, Rack A, Olbinado M P, Hinds G, Brett D J L, Darcy E, Finegan D P, and Shearing P R 2021 Cell Rep. Phys. Sci. 2 100360 | Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors
[19] | Xiong R Y, Zhang Y, Wang Y M, Song L, Li M Y, Yang H, Huang Z G, Li D Q, and Zhou H M 2021 Small Methods 5 2100280 | Scalable Manufacture of High‐Performance Battery Electrodes Enabled by a Template‐Free Method
[20] | Chang Z, Yang H J, Zhu X Y, He P, and Zhou H S 2022 Nat. Commun. 13 1510 | A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments
[21] | Chen J, Fan X L, Li Q, Yang H B, Khoshi M R, Xu Y B, Hwang S, Chen L, Ji X, Yang C Y, He H X, Wang C M, Garfunkel E, Su D, Borodin O, and Wang C S 2020 Nat. Energy 5 386 | Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
[22] | Yin W, Grimaud A, Rousse G, Abakumov A M, Senyshyn A, Zhang L T, Trabesinger S, Iadecola A, Foix D, Giaume D, and Tarascon J M 2020 Nat. Commun. 11 1252 | Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2
[23] | Huang W Y, Yang L Y, Chen Z F, Liu T C, Ren G X, Shan P Z, Zhang B W, Chen S M, Li S N, Li J Y, Lin C, Zhao W G, Qiu J M, Fang J J, Zhang M J, Dong C, Li F, Yang Y, Sun C J, Ren Y, Huang Q Z, Hou G J, Dou S X, Lu J, Amine K, and Pan F 2022 Adv. Mater. 34 2202745 | Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High‐Capacity Manganese Oxide Cathode
[24] | Niu C J, Pan H L, Xu W, Xiao J, Zhang J G, Luo L L, Wang C M, Mei D H, Meng J S, Wang X P, Liu Z A, Mai L, and Liu J 2019 Nat. Nanotechnol. 14 594 | Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
[25] | Louli A J, Eldesoky A, Weber R, Genovese M, Coon M, deGooyer J, Deng Z, White R T, Lee J, Rodgers T, Petibon R, Hy S, Cheng S J H, and Dahn J R 2020 Nat. Energy 5 693 | Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis
[26] | Ou X, Liu T C, Zhong W T, Fan X M, Guo X Y, Huang X J, Cao L, Hu J H, Zhang B, Chu Y S, Hu G R, Lin Z, Dahbi M, Alami J, Amine K, Yang C H, and Lu J 2022 Nat. Commun. 13 2319 | Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy
[27] | Cao W Z, Li Q, Yu X Q, and Li H 2022 eScience 2 47 | Controlling Li deposition below the interface
[28] | Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H, Matthews B E, Lee H K, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, and Zhang J G 2019 Nat. Energy 4 796 | Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
[29] | Kondori A, Esmaeilirad M, Harzandi A M, Amine R, Saray M T, Yu L, Liu T C, Wen J G, Shan N N, Wang H H, Ngo A T, Redfern P C, Johnson C S, Amine K, Shahbazian-Yassar R, Curtiss L A, and Asadi M 2023 Science 379 499 | A room temperature rechargeable Li2 O-based lithium-air battery enabled by a solid electrolyte
[30] | Cheng Q, Chen Z X, Li X Y, Hou L P, Bi C X, Zhang X Q, Huang J Q, and Li B Q 2023 J. Energy Chem. 76 181 | Constructing a 700 Wh kg−1-level rechargeable lithium-sulfur pouch cell