[1] | Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, and Steigerwald M L 2008 J. Am. Chem. Soc. 130 6955 | Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3
[2] | Bhide V G, Deshmukh K G, Hegde M S 1962 Physica 28 871 | Ferroelectric properties of PbTiO3
[3] | Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti J G A, and Rödel J 2017 Appl. Phys. Rev. 4 041305 | BaTiO3 -based piezoelectrics: Fundamentals, current status, and perspectives
[4] | Gao J H, Xue D Z, Liu W F, Zhou C, and Ren X B 2017 Actuators 6 24 | Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications
[5] | Mikolajick T, Schroeder U, and Slesazeck S 2020 IEEE Trans. Electron Devices 67 1434 | The Past, the Present, and the Future of Ferroelectric Memories
[6] | Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, and Zhu W G 2017 Nat. Commun. 8 14956 | Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
[7] | Zheng C X, Yu L, Zhu L, Collins J L, Kim D, Lou Y D, Xu C, Li M, Wei Z, Zhang Y P, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W, and Fuhrer M S 2018 Sci. Adv. 4 eaar7720 | Room temperature in-plane ferroelectricity in van der Waals In2 Se3
[8] | Liu F C, You L, Seyler K L, Li X, Yu P, Lin J, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, and Liu Z 2016 Nat. Commun. 7 12357 | Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
[9] | Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q, Chen X, and Ji S 2016 Science 353 274 | Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
[10] | Wang H and Qian X 2017 2D Mater. 4 015042 | Two-dimensional multiferroics in monolayer group IV monochalcogenides
[11] | Higashitarumizu N, Kawamoto H, Lee C J, Lin B H, Chu F H, Yonemori I, Nishimura T, Wakabayashi K, Chang W H, and Nagashio K 2020 Nat. Commun. 11 2428 | Purely in-plane ferroelectricity in monolayer SnS at room temperature
[12] | Zhang L, Tang C, Sanvito S, and Du A 2021 npj Comput. Mater. 7 135 | Purely one-dimensional ferroelectricity and antiferroelectricity from van der Waals niobium oxide trihalides
[13] | Zhang J J, Guan J, Dong S, and Yakobson B I 2019 J. Am. Chem. Soc. 141 15040 | Room-Temperature Ferroelectricity in Group-IV Metal Chalcogenide Nanowires
[14] | Zhang X Y, Lai C W, Zhao X, Wang D Y, and Dai J Y 2005 Appl. Phys. Lett. 87 143102 | Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays
[15] | Shimada T, Wang X, Kondo Y, and Kitamura T 2012 Phys. Rev. Lett. 108 067601 | Absence of Ferroelectric Critical Size in Ultrathin Nanotubes: A Density-Functional Theory Study
[16] | Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, and Hisama K 2020 Science 367 537 | One-dimensional van der Waals heterostructures
[17] | Shin Y H, Grinberg I, Chen I W, and Rappe A M 2007 Nature 449 881 | Nucleation and growth mechanism of ferroelectric domain-wall motion
[18] | Klomp A J, Khachaturyan R, Wallis T, Albe K, and Grunebohm A 2022 Phys. Rev. Mater. 6 104411 | Thermal stability of nanoscale ferroelectric domains by molecular dynamics modeling
[19] | Ou Y J, Sun J, Li Y M, and Jiang A Q 2023 Chin. Phys. Lett. 40 038501 | A Ferroelectric Domain-Wall Transistor
[20] | Zhao W, Fu Z, Deng J, Li S, Han Y, Li M R, Wang X, and Hong J 2021 Chin. Phys. Lett. 38 037701 | Observation of Ferroelastic and Ferroelectric Domains in AgNbO3 Single Crystal
[21] | Jin C F, Zhang S Q, Shen Z Q, and Li W L 2019 Chin. Phys. Lett. 36 107701 | Roles of Nano-Domain Switching and Non-180° Domains in Enhancing Local Piezoelectric Responses of Highly (100)-Oriented Pb(Zr0.60 Ti0.40 )O3 Thin Films*
[22] | Zhang X Y, Wang B, Ji Y Z, Xue F, Wang Y, and Chen L Q 2023 Acta Mater. 242 118351 | First-principles calculations of domain wall energies of prototypical ferroelectric perovskites
[23] | Lubk A, Gemming S, and Spaldin N A 2009 Phys. Rev. B 80 104110 | First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite
[24] | Xu S Q, Zhang Y, Guo H Z, Geng W P, Bai Z L, and Jiang A Q 2017 Chin. Phys. Lett. 34 027701 | Improved Polarization Retention of BiFeO3 Thin Films Using GdScO3 (110) Substrates
[25] | Yan Y B, Xiang M z, Wang X y, Xu T, and Xuan F Z 2022 J. Appl. Phys. 132 074302 | Ferroelectric domain wall in two-dimensional GeS
[26] | Behler J 2016 J. Chem. Phys. 145 170901 | Perspective: Machine learning potentials for atomistic simulations
[27] | Mueller T, Hernandez A, and Wang C 2020 J. Chem. Phys. 152 050902 | Machine learning for interatomic potential models
[28] | Zhang J, Zhang F, Wei D, Liu L, Liu X, Fang D, Zhang G X, Chen X, and Wang D 2022 Phys. Rev. B 105 094116 | Structural phase transition of monochalcogenides investigated with machine learning
[29] | Wu J, Bai L, Huang J, Ma L, Liu J, and Liu S 2021 Phys. Rev. B 104 174107 | Accurate force field of two-dimensional ferroelectrics from deep learning
[30] | Wu M H and Zeng X C 2016 Nano Lett. 16 3236 | Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues