Express Letter

Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS2 Moiré Superlattice

    Show all affliationsShow less
  • Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena, such as Mott insulator states, ferroelectric order, unconventional superconductivity and orbital ferromagnetism. Although remarkable progress has been achieved, current research in moiré physics has mainly focused on the single species properties, while the coupling between distinct moiré quantum phenomena remains elusive. Here we demonstrate, for the first time, the strong coupling between ferroelectricity and correlated states in a twisted quadrilayer MoS2 moiré superlattice, where the twist angles are controlled in sequence to be ∼ 57°, ∼ 0°, and ∼ –57°. Correlated insulator states are unambiguously established at moiré band filling factors v = 1, 2, 3 of twisted quadrilayer MoS2. Remarkably, ferroelectric order can occur at correlated insulator states and disappears quickly as the moiré band filling deviates from the integer fillings, providing smoking gun evidences of the coupling between ferroelectricity and correlated states. Our results demonstrate the coupling between different moiré quantum properties and will hold great promise for new moiré physics and applications.
  • Article Text

  • Acknowledgements.: This work was supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001), the National Key Research and Development Program of China (Grant Nos. 2021YFA1202900 and 2020YFA0309600), the National Science Foundation of China (Grant Nos. 61888102, 11834017, 1207441, and 12274447), and the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000). K.W. and T.T. acknowledge the supports from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant No. JPMXP0112101001), JSPS KAKENHI (Grant Nos. 19H05790, 20H00354, and 21H05233) and A3 Foresight by JSPS.
  • [1]
    Novoselov K S, Mishchenko A, Carvalho A, Castro N A H 2016 Science 353 aac9439 doi: 10.1126/science.aac9439

    CrossRef Google Scholar

    [2]
    Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994 doi: 10.1038/s41565-018-0298-5

    CrossRef Google Scholar

    [3]
    Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042 doi: 10.1038/natrevmats.2016.42

    CrossRef Google Scholar

    [4]
    Du L J, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y G, Lau C N, Sun Z P 2021 Nat. Rev. Phys. 3 193 doi: 10.1038/s42254-020-00276-0

    CrossRef Google Scholar

    [5]
    Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A, Young A F 2021 Nat. Rev. Mater. 6 201 doi: 10.1038/s41578-021-00284-1

    CrossRef Google Scholar

    [6]
    Chu Y B, Liu L, Yuan Y L, Shen C, Yang R, Shi D X, Yang W, Zhang G Y 2020 Chin. Phys. B 29 128104 doi: 10.1088/1674-1056/abb221

    CrossRef Google Scholar

    [7]
    Mak K F, Shan J 2022 Nat. Nanotechnol. 17 686 doi: 10.1038/s41565-022-01165-6

    CrossRef Google Scholar

    [8]
    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80 doi: 10.1038/nature26154

    CrossRef Google Scholar

    [9]
    Chen G R, Jiang L L, Wu S, Lyu B, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z W, Jung J, Zhang Y B, Wang F 2019 Nat. Phys. 15 237 doi: 10.1038/s41567-018-0387-2

    CrossRef Google Scholar

    [10]
    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520 doi: 10.1038/s41567-020-0825-9

    CrossRef Google Scholar

    [11]
    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605 doi: 10.1126/science.aaw3780

    CrossRef Google Scholar

    [12]
    Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature 579 56 doi: 10.1038/s41586-020-2049-7

    CrossRef Google Scholar

    [13]
    Shen C, Ying J H, Liu L, Liu J P, Li N, Wang S P, Tang J, Zhao Y C, Chu Y B, Watanabe K, Taniguchi T, Yang R, Shi D X, Qu F M, Lu L, Yang W, Zhang G Y 2021 Chin. Phys. Lett. 38 047301 doi: 10.1088/0256-307X/38/4/047301

    CrossRef Google Scholar

    [14]
    Wu S, Zhang Z Y, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488 doi: 10.1038/s41563-020-00911-2

    CrossRef Google Scholar

    [15]
    Regan E C, Wang D Q, Jin C H, Bakti U M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359 doi: 10.1038/s41586-020-2092-4

    CrossRef Google Scholar

    [16]
    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214 doi: 10.1038/s41586-020-2868-6

    CrossRef Google Scholar

    [17]
    Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 doi: 10.1038/s41565-021-01059-z

    CrossRef Google Scholar

    [18]
    Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-Leon H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal’ko V I, Gorbachev R 2022 Nat. Nanotechnol. 17 390 doi: 10.1038/s41565-022-01072-w

    CrossRef Google Scholar

    [19]
    Zheng Z R, Ma Q, Bi Z, de la B S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, Jarillo-Herrero P 2020 Nature 588 71 doi: 10.1038/s41586-020-2970-9

    CrossRef Google Scholar

    [20]
    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43 doi: 10.1038/nature26160

    CrossRef Google Scholar

    [21]
    Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature 572 215 doi: 10.1038/s41586-019-1393-y

    CrossRef Google Scholar

    [22]
    Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653 doi: 10.1038/s41586-019-1695-0

    CrossRef Google Scholar

    [23]
    Regan E C, Wang D Q, Paik E Y, Zeng Y X, Zhang L, Zhu J H, MacDonald A H, Deng H, Wang F 2022 Nat. Rev. Mater. 7 778 doi: 10.1038/s41578-022-00440-1

    CrossRef Google Scholar

    [24]
    Seyler K L, Rivera P, Yu H Y, Wilson N P, Ray E L, Mandrus D G, Yan J Q, Yao W, Xu X D 2019 Nature 567 66 doi: 10.1038/s41586-019-0957-1

    CrossRef Google Scholar

    [25]
    Lin Q, Fang H, Liu Y, Zhang Y, Fischer M, Li J, Hagel J, Brem S, Malic E, Stenger N, Sun Z, Wubs M, Xiao S 2023 arXiv:2302.01266 [physcis.optics]

    Google Scholar

    [26]
    Yu H Y, Liu G B, Tang J J, Xu X D, Yao W 2017 Sci. Adv. 3 e1701696 doi: 10.1126/sciadv.1701696

    CrossRef Google Scholar

    [27]
    Ma C, Yuan S F, Cheung P, Watanabe K, Taniguchi T, Zhang F, Xia F N 2022 Nature 604 266 doi: 10.1038/s41586-022-04548-w

    CrossRef Google Scholar

    [28]
    Xian L D, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, Rubio A 2021 Nat. Commun. 12 5644 doi: 10.1038/s41467-021-25922-8

    CrossRef Google Scholar

    [29]
    Naik M H, Kundu S, Maity I, Jain M 2020 Phys. Rev. B 102 075413 doi: 10.1103/PhysRevB.102.075413

    CrossRef Google Scholar

    [30]
    Wang Q Q, Tang J, Li X M, Tian J P, Liang J, Li N, Ji D P, Xian L D, Guo Y T, Li L, Zhang Q H, Chu Y B, Wei Z, Zhao Y C, Du L J, Yu H, Bai X D, Gu L, Liu K H, Yang W, Yang R, Shi D X, Zhang G Y 2022 Natl Sci. Rev. 9 nwac077 doi: 10.1093/nsr/nwac077

    CrossRef Google Scholar

    [31]
    Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X R, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861 doi: 10.1038/s41563-020-0708-6

    CrossRef Google Scholar

    [32]
    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534 doi: 10.1038/nnano.2015.70

    CrossRef Google Scholar

    [33]
    Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, Zhang G Y 2017 Adv. Mater. 29 1702522 doi: 10.1002/adma.201702522

    CrossRef Google Scholar

    [34]
    Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, Ye P D 2019 Nat. Electron. 2 580 doi: 10.1038/s41928-019-0338-7

    CrossRef Google Scholar

    [35]
    Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, Duan C G 2020 Adv. Electron. Mater. 6 1900818 doi: 10.1002/aelm.201900818

    CrossRef Google Scholar

  • Related Articles

    [1]LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs [J]. Chin. Phys. Lett., 2012, 29(7): 076801. doi: 10.1088/0256-307X/29/7/076801
    [2]LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(11): 116802. doi: 10.1088/0256-307X/28/11/116802
    [3]WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection [J]. Chin. Phys. Lett., 2010, 27(7): 077305. doi: 10.1088/0256-307X/27/7/077305
    [4]LIU Hong-Gang, JIN Zhi, SU Yong-Bo, WANG Xian-Tai, CHANG Hu-Dong, ZHOU Lei, LIU Xin-Yu, WU De-Xin. Extrinsic Base Surface Passivation in High Speed “Type-II'” GaAsSb/InP DHBTs Using an InGaAsP Ledge Structure [J]. Chin. Phys. Lett., 2010, 27(5): 058502. doi: 10.1088/0256-307X/27/5/058502
    [5]GUO Jie, SUN Wei-Guo, PENG Zhen-Yu, ZHOU Zhi-Qiang, XU Ying-Qiang, NIU Zhi-Chuan. Interfaces in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(4): 047802. doi: 10.1088/0256-307X/26/4/047802
    [6]TANG Bao, XU Ying-Qiang, ZHOU Zhi-Qiang, HAO Rui-Ting, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2009, 26(2): 028102. doi: 10.1088/0256-307X/26/2/028102
    [7]ZHANG Jie, GUO Li-Wei, XING Zhi-Gang, GE Bing-Hui, DING Guo-Jian, PENG Ming-Zeng, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth of Highly Conductive n-Type Al0.7Ga0.3N Film by Using AlN Buffer with Periodical Variation of V / III Ratio [J]. Chin. Phys. Lett., 2008, 25(12): 4449-4452.
    [8]WANG Xian-Cheng, MA Hong-An, ZANG Chuan-Yi, TIAN Yu, LI Shang-Sheng, JIA Xiao-Peng. Growth of Large High-Quality Type-II a Diamond Crystals [J]. Chin. Phys. Lett., 2005, 22(7): 1800-1802.
    [9]XU Xiao-Hua, NIU Zhi-Chuan, NI Hai-Qiao, XU Ying-Qiang, ZHANG Wei, HE Zheng-Hong, HAN Qin, WU Rong-Han. Molecular Beam Epitaxy Growth and Photoluminescence of Type-II (GaAs1-xSbx/InyGa1-yAs)/GaAs Bilayer Quantum Well [J]. Chin. Phys. Lett., 2004, 21(9): 1831-1834.
    [10]LONG Fei, LIU Shenzhi, MEI Fei, MIAO Jingqi, LIANG Jingguo. Electronic Structure of Type-II InAs/GaSb Misaligned Superlattice [J]. Chin. Phys. Lett., 1994, 11(2): 109-112.
  • Other Related Supplements

Catalog

    Figures(4)

    Article views (285) PDF downloads (394) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return