[1] | Novoselov K S, Mishchenko A, Carvalho A, and Castro N A H 2016 Science 353 aac9439 | 2D materials and van der Waals heterostructures
[2] | Jin C H, Ma E Y, Karni O, Regan E C, Wang F, and Heinz T F 2018 Nat. Nanotechnol. 13 994 | Ultrafast dynamics in van der Waals heterostructures
[3] | Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, and Duan X F 2016 Nat. Rev. Mater. 1 16042 | Van der Waals heterostructures and devices
[4] | Du L J, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y G, Lau C N, and Sun Z P 2021 Nat. Rev. Phys. 3 193 | Engineering symmetry breaking in 2D layered materials
[5] | Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A, and Young A F 2021 Nat. Rev. Mater. 6 201 | The marvels of moiré materials
[6] | Chu Y B, Liu L, Yuan Y L, Shen C, Yang R, Shi D X, Yang W, and Zhang G Y 2020 Chin. Phys. B 29 128104 | A review of experimental advances in twisted graphene moiré superlattice*
[7] | Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 | Semiconductor moiré materials
[8] | Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[9] | Chen G R, Jiang L L, Wu S, Lyu B, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z W, Jung J, Zhang Y B, and Wang F 2019 Nat. Phys. 15 237 | Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice
[10] | Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, and Zhang G Y 2020 Nat. Phys. 16 520 | Correlated states in twisted double bilayer graphene
[11] | Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, and Goldhaber-Gordon D 2019 Science 365 605 | Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
[12] | Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, and Wang F 2020 Nature 579 56 | Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice
[13] | Shen C, Ying J H, Liu L, Liu J P, Li N, Wang S P, Tang J, Zhao Y C, Chu Y B, Watanabe K, Taniguchi T, Yang R, Shi D X, Qu F M, Lu L, Yang W, and Zhang G Y 2021 Chin. Phys. Lett. 38 047301 | Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene
[14] | Wu S, Zhang Z Y, Watanabe K, Taniguchi T, and Andrei E Y 2021 Nat. Mater. 20 488 | Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene
[15] | Regan E C, Wang D Q, Jin C H, Bakti U M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, and Wang F 2020 Nature 579 359 | Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices
[16] | Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, and Shan J 2020 Nature 587 214 | Correlated insulating states at fractional fillings of moiré superlattices
[17] | Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 | Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides
[18] | Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-Leon H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal'ko V I, and Gorbachev R 2022 Nat. Nanotechnol. 17 390 | Interfacial ferroelectricity in marginally twisted 2D semiconductors
[19] | Zheng Z R, Ma Q, Bi Z, de la B S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, and Jarillo-Herrero P 2020 Nature 588 71 | Unconventional ferroelectricity in moiré heterostructures
[20] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[21] | Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, and Wang F 2019 Nature 572 215 | Signatures of tunable superconductivity in a trilayer graphene moiré superlattice
[22] | Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, and Efetov D K 2019 Nature 574 653 | Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene
[23] | Regan E C, Wang D Q, Paik E Y, Zeng Y X, Zhang L, Zhu J H, MacDonald A H, Deng H, and Wang F 2022 Nat. Rev. Mater. 7 778 | Emerging exciton physics in transition metal dichalcogenide heterobilayers
[24] | Seyler K L, Rivera P, Yu H Y, Wilson N P, Ray E L, Mandrus D G, Yan J Q, Yao W, and Xu X D 2019 Nature 567 66 | Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers
[25] | Lin Q, Fang H, Liu Y, Zhang Y, Fischer M, Li J, Hagel J, Brem S, Malic E, Stenger N, Sun Z, Wubs M, and Xiao S 2023 arXiv:2302.01266 [physcis.optics] | A room-temperature moiré interlayer exciton laser
[26] | Yu H Y, Liu G B, Tang J J, Xu X D, and Yao W 2017 Sci. Adv. 3 e1701696 | Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices
[27] | Ma C, Yuan S F, Cheung P, Watanabe K, Taniguchi T, Zhang F, and Xia F N 2022 Nature 604 266 | Intelligent infrared sensing enabled by tunable moiré quantum geometry
[28] | Xian L D, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, and Rubio A 2021 Nat. Commun. 12 5644 | Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2
[29] | Naik M H, Kundu S, Maity I, and Jain M 2020 Phys. Rev. B 102 075413 | Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots
[30] | Wang Q Q, Tang J, Li X M, Tian J P, Liang J, Li N, Ji D P, Xian L D, Guo Y T, Li L, Zhang Q H, Chu Y B, Wei Z, Zhao Y C, Du L J, Yu H, Bai X D, Gu L, Liu K H, Yang W, Yang R, Shi D X, and Zhang G Y 2022 Natl. Sci. Rev. 9 nwac077 | Layer-by-layer epitaxy of multi-layer MoS2 wafers
[31] | Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X R, Hone J, Rubio A, Pasupathy A N, and Dean C R 2020 Nat. Mater. 19 861 | Correlated electronic phases in twisted bilayer transition metal dichalcogenides
[32] | Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534 | Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform
[33] | Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, and Zhang G Y 2017 Adv. Mater. 29 1702522 | Graphene‐Contacted Ultrashort Channel Monolayer MoS2 Transistors
[34] | Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, and Ye P D 2019 Nat. Electron. 2 580 | A ferroelectric semiconductor field-effect transistor
[35] | Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, and Duan C G 2020 Adv. Electron. Mater. 6 1900818 | Recent Progress in Two‐Dimensional Ferroelectric Materials