[1] | Kitaev A 2003 Ann. Phys. 303 2 | Fault-tolerant quantum computation by anyons
[2] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[3] | Read N and Green D 2000 Phys. Rev. B 61 10267 | Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect
[4] | Kitaev A Y 2001 Phys.-Usp. 44 131 | Unpaired Majorana fermions in quantum wires
[5] | Lutchyn R M, Sau J D, and Sarma S D 2010 Phys. Rev. Lett. 105 077001 | Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures
[6] | Oreg Y, Refael G, and von Oppen F 2010 Phys. Rev. Lett. 105 177002 | Helical Liquids and Majorana Bound States in Quantum Wires
[7] | Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2012 Science 336 1003 | Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices
[8] | Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science 354 1557 | Majorana bound state in a coupled quantum-dot hybrid-nanowire system
[9] | Gül Ö, Zhang H, Bommer J D S, de Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanable K, Taniguchi T, and Kouwenhoven L P 2018 Nat. Nanotechnol. 13 192 | Ballistic Majorana nanowire devices
[10] | Zhang H, de Moor M W A, Bommer J D S et al. 2021 arXiv:2101.11456 [cond-mat.mes-hall] | Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices
[11] | Song H D, Zhang Z T, Pan D, Liu D H, Wang Z Y, Cao Z, Liu L, Wen L J, Liao D Y, Zhuo R, Liu D E, Shang R, Zhao J H, and Zhang H 2022 Phys. Rev. Res. 4 033235 | Large zero bias peaks and dips in a four-terminal thin InAs-Al nanowire device
[12] | Wang Z Y, Song H D, Pan D, Zhang Z T, Miao W T, Li R D, Cao Z, Zhang G, Liu L, Wen L J, Zhuo R, Liu D E, He K, Shang R, Zhao J, and Zhang H 2022 Phys. Rev. Lett. 129 167702 | Plateau Regions for Zero-Bias Peaks within 5% of the Quantized Conductance Value
[13] | Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygard J, Aguado R, and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575 | From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires
[14] | Zhang H, Liu D E, Wimmer M, and Kouwenhoven L P 2019 Nat. Commun. 10 5128 | Next steps of quantum transport in Majorana nanowire devices
[15] | Alicea J, Oreg Y, Refael G, Oppen F, and Fisher M 2010 Nat. Phys. 7 412 | Non-Abelian statistics and topological quantum information processing in 1D wire networks
[16] | Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R, and Beenakker C W J 2013 Phys. Rev. B 88 035121 | Flux-controlled quantum computation with Majorana fermions
[17] | Knapp C, Zaletel M, Liu D E, Cheng M, Bonderson P, and Nayak C 2016 Phys. Rev. X 6 041003 | The Nature and Correction of Diabatic Errors in Anyon Braiding
[18] | Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, and Alicea J 2016 Phys. Rev. X 6 031016 | Milestones Toward Majorana-Based Quantum Computing
[19] | Plugge S, Rasmussen A, Egger R, and Flensberg K 2017 New J. Phys. 19 012001 | Majorana box qubits
[20] | Vijay S and Fu L 2016 Phys. Rev. B 94 235446 | Teleportation-based quantum information processing with Majorana zero modes
[21] | Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, and Freedman M H 2017 Phys. Rev. B 95 235305 | Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes
[22] | Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319 | Charge-insensitive qubit design derived from the Cooper pair box
[23] | Houck A, Schuster D, Gambetta J, Schreier J, Johnson B, Chow J, Frunzio L, Majer J, Devoret M, Girvin S, and Schoelkopf R 2007 Nature 449 328 | Generating single microwave photons in a circuit
[24] | Ginossar E and Grosfeld E 2014 Nat. Commun. 5 4772 | Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit
[25] | Yavilberg K, Ginossar E, and Grosfeld E 2015 Phys. Rev. B 92 075143 | Fermion parity measurement and control in Majorana circuit quantum electrodynamics
[26] | Li T, Coish W A, Hell M, Flensberg K, and Leijnse M 2018 Phys. Rev. B 98 205403 | Four-Majorana qubit with charge readout: Dynamics and decoherence
[27] | Ávila J, Prada E, San-Jose P, and Aguado R 2020 Phys. Rev. Res. 2 033493 | Majorana oscillations and parity crossings in semiconductor nanowire-based transmon qubits
[28] | Chirolli L, Yao N Y, and Moore J E 2022 Phys. Rev. Lett. 129 177701 | SWAP Gate between a Majorana Qubit and a Parity-Protected Superconducting Qubit
[29] | Larsen T W, Petersson K D, Kuemmeth F, Jespersen T S, Krogstrup P, Nygård J, and Marcus C M 2015 Phys. Rev. Lett. 115 127001 | Semiconductor-Nanowire-Based Superconducting Qubit
[30] | de Lange G, van Heck B, Bruno A, van Woerkom D J, Geresdi A, Plissard S R, Bakkers E P A M, Akhmerov A R, and DiCarlo L 2015 Phys. Rev. Lett. 115 127002 | Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements
[31] | Casparis L, Larsen T W, Olsen M S, Kuemmeth F, Krogstrup P, Nygård J, Petersson K D, and Marcus C M 2016 Phys. Rev. Lett. 116 150505 | Gatemon Benchmarking and Two-Qubit Operations
[32] | Luthi F, Stavenga T, Enzing O W, Bruno A, Dickel C, Langford N K, Rol M A, Jespersen T S, Nygård J, Krogstrup P, and DiCarlo L 2018 Phys. Rev. Lett. 120 100502 | Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field
[33] | Kringhøj A, van Heck B, Larsen T W, Erlandsson O, Sabonis D, Krogstrup P, Casparis L, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 124 246803 | Suppressed Charge Dispersion via Resonant Tunneling in a Single-Channel Transmon
[34] | Bargerbos A, Uilhoorn W, Yang C K, Krogstrup P, Kouwenhoven L P, de Lange G, van Heck B, and Kou A 2020 Phys. Rev. Lett. 124 246802 | Observation of Vanishing Charge Dispersion of a Nearly Open Superconducting Island
[35] | Larsen T W, Gershenson M E, Casparis L, Kringhøj A, Pearson N J, McNeil R P G, Kuemmeth F, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 056801 | Parity-Protected Superconductor-Semiconductor Qubit
[36] | Sabonis D, Erlandsson O, Kringhøj A, van Heck B, Larsen T W, Petkovic I, Krogstrup P, Petersson K D, and Marcus C M 2020 Phys. Rev. Lett. 125 156804 | Destructive Little-Parks Effect in a Full-Shell Nanowire-Based Transmon
[37] | Bargerbos A, Pita-Vidal M, Žitko R, Ávila J, Splitthoff L J, Grünhaupt L, Wesdorp J J, Andersen C K, Liu Y, Kouwenhoven L P, Aguado R, Kou A, and van Heck B 2022 PRX Quantum 3 030311 | Singlet-Doublet Transitions of a Quantum Dot Josephson Junction Detected in a Transmon Circuit
[38] | Caroff P, Dick K A, Johansson J, Messing M E, Deppert K, and Samuelson L 2009 Nat. Nanotechnol. 4 50 | Controlled polytypic and twin-plane superlattices in iii–v nanowires
[39] | Shtrikman H, Popovitz-Biro R, Kretinin A, Houben L, Heiblum M, Bukała M, Galicka M, Buczko R, and Kacman P 2009 Nano Lett. 9 1506 | Method for Suppression of Stacking Faults in Wurtzite III−V Nanowires
[40] | Pan D, Fu M, Yu X, Wang X, Zhu L, Nie S, Wang S, Chen Q, Xiong P, Molnár S, and Zhao J 2014 Nano Lett. 14 1214 | Controlled Synthesis of Phase-Pure InAs Nanowires on Si(111) by Diminishing the Diameter to 10 nm
[41] | Pientka F, Kells G, Romito A, Brouwer P W, and Von Oppen F 2012 Phys. Rev. Lett. 109 227006 | Enhanced Zero-Bias Majorana Peak in the Differential Tunneling Conductance of Disordered Multisubband Quantum-Wire/Superconductor Junctions
[42] | Rainis D, Trifunovic L, Klinovaja J, and Loss D 2013 Phys. Rev. B 87 024515 | Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions
[43] | Pan H N and Sarma S D 2020 Phys. Rev. Res. 2 013377 | Physical mechanisms for zero-bias conductance peaks in Majorana nanowires
[44] | Pan D, Song H, Zhang S, Liu L, Wen L, Liao D, Zhuo R, Wang Z, Zhang Z, Yang S, Ying J, Miao W, Shang R, Zhang H, and Zhao J 2022 Chin. Phys. Lett. 39 058101 | In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
[45] | Wang Z, Pan D, Zhang S et al. 2023 Supercurrent in a Quasi-Ballistic Thin InAs-Al Hybrid Nanowire Device (to be submitted) |
[46] | Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, and Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601 | High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity
[47] | Purcell E M, Torrey H C, and Pound R V 1946 Phys. Rev. 69 37 | Resonance Absorption by Nuclear Magnetic Moments in a Solid
[48] | Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M, Girvin S M, and Schoelkopf R J 2007 Nature 445 515 | Resolving photon number states in a superconducting circuit
[49] | Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318 | A quantum engineer's guide to superconducting qubits
[50] | Aghaee M, Akkala A, Alam Z et al. 2022 arXiv:2207.02472 [cond-mat.mes-hall] | InAs-Al Hybrid Devices Passing the Topological Gap Protocol