Items | Parameters |
---|---|
Chemical formula | Y$_{0.50}$Fe$_{3.30}$Sn$_{2.93}$ |
Formula weight | 576.60 g/mol |
Crystal system | Hexagonal |
Space group | $P6/mmm$ |
Unit cell dimensions | $a = 5.3728$(4) Å $\alpha = 90^{\circ}$ $b = 5.3728$(4) Å $\beta = 90^{\circ}$ $c = 4.4534$(4) Å $\gamma = 120^{\circ}$ |
Volume | 111.333(19) Å$^{3}$ |
$Z$ | 1 |
Density (calculated) | 8.600 g/cm$^{3}$ |
[1] | Syozi I 1951 Prog. Theor. Phys. 6 306 | Statistics of Kagome Lattice
[2] | Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Suss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125 | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
[3] | Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282 | Magnetic Weyl semimetal phase in a Kagomé crystal
[4] | Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C G, Liu E K, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, and Felser C 2019 Adv. Mater. 31 1806622 | Zero‐Field Nernst Effect in a Ferromagnetic Kagome‐Lattice Weyl‐Semimetal Co3 Sn2 S2
[5] | Zeng Q Q, Gu G X, Shi G, Shen J L, Ding B, Zhang S, Xi X K, Felser C, Li Y Q, and Liu E K 2021 Sci. Chin. Phys. Mech. & Astron. 64 287512 | On the anomalous low-resistance state and exceptional Hall component in hard-magnetic Weyl nanoflakes
[6] | Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212 | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
[7] | Nayak A K, Fischer J E, Sun Y, Yan B H, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C, and Parkin S S P 2016 Sci. Adv. 2 e1501870 | Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3 Ge
[8] | Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, and Nakatsuji S 2017 Nat. Phys. 13 1085 | Large anomalous Nernst effect at room temperature in a chiral antiferromagnet
[9] | Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, and Nakatsuji S 2017 Nat. Mater. 16 1090 | Evidence for magnetic Weyl fermions in a correlated metal
[10] | Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407 | New kagome prototype materials: discovery of , and
[11] | Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[12] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 | Superconductivity in the kagome metal
[13] | Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Seshadri R, and Wilson S D 2021 Phys. Rev. X 11 041030 | Fermi Surface Mapping and the Nature of Charge-Density-Wave Order in the Kagome Superconductor
[14] | Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403 | Superconductivity and Normal-State Properties of Kagome Metal RbV3 Sb5 Single Crystals
[15] | Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137 | Charge order and superconductivity in kagome materials
[16] | Gong C S, Tian S J, Tu Z J, Yin Q W, Fu Y, Luo R T, and Lei H C 2022 Chin. Phys. Lett. 39 087401 | Superconductivity in Kagome Metal YRu3 Si2 with Strong Electron Correlations
[17] | Shores M P, Nytko E A, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 | A Structurally Perfect S =1 /2 Kagomé Antiferromagnet
[18] | Mendels P and Bert F 2010 J. Phys. Soc. Jpn. 79 011001 | Quantum Kagome Antiferromagnet ZnCu3 (OH)6 Cl2
[19] | Khuntia P, Velazquez M, Barthelemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469 | Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2
[20] | Okamoto Y, Nohara M, Aruga-Katori H, and Takagi H 2007 Phys. Rev. Lett. 99 137207 | Spin-Liquid State in the Hyperkagome Antiferromagnet
[21] | Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S T S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Son Z D, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S, and Hasan M Z 2020 Nature 583 533 | Quantum-limit Chern topological magnetism in TbMn6Sn6
[22] | Liu Z H, Zhao N N, Li M, Yin Q W, Wang Q, Liu Z T, Shen D W, Huang Y B, Lei H C, Liu K, and Wang S C 2021 Phys. Rev. B 104 115122 | Electronic correlation effects in the kagome magnet
[23] | Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P, and Wang S C 2021 Nat. Commun. 12 3129 | Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6
[24] | Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett. 127 266401 | Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of ( , Ho)
[25] | Gu X, Chen C, Wei W S, Gao L L, Liu J Y, Du X, Pei D, Zhou J S, Xu R Z, Yin Z X, Zhao W X, Li Y D, Jozwiak C, Bostwick A, Rotenberg E, Backes D, Veiga L S I, Dhesi S, Hesjedal T, van der Laan G, Du H F, Jiang W J, Qi Y P, Li G, Shi W J, Liu Z K, Chen Y L, and Yang L X 2022 Phys. Rev. B 105 155108 | Robust kagome electronic structure in the topological quantum magnets
[26] | Hu Y, Wu X X, Yang Y Q, Gao S Y, Plumb N C, Schnyder A P, Xie W W, Ma J Z, and Shi M 2022 Sci. Adv. 8 eadd2024 | Tunable topological Dirac surface states and van Hove singularities in kagome metal GdV6 Sn6
[27] | Koretskaya O E and Skolozdra R V 1986 Inorg. Mater. 22 606 |
[28] | El Idrissi B C, Venturini G, and Malaman B 1991 Mater. Res. Bull. 26 1331 | Crystal structures of RFe6Sn6 (R = Sc, Y, GdTm, Lu) rare-earth iron stannides
[29] | Cadogan J M, S, Ryan D H, Moze O, and Kockelmann W 2000 J. Appl. Phys. 87 6046 | Neutron diffraction and Mössbauer study of the magnetic structure of YFe6Sn6
[30] | Canfield P C and Fisk Z 1992 Philos. Mag. B 65 1117 | Growth of single crystals from metallic fluxes
[31] | Kanatzidis M G, Pottgen R, and Jeitschko W 2005 Angew. Chem. Int. Ed. Engl. 44 6996 | The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds
[32] | Weiland A, Eddy L J, McCandless G T, Hodovanets H, Paglione J, and Chan J Y 2020 Cryst. Growth & Des. 20 6715 | Refine Intervention: Characterizing Disordered Yb0.5 Co3 Ge3
[33] | Mazet T and Malaman B 2000 J. Magn. Magn. Mater. 219 33 | Local chemical and magnetic disorder within the HfFe6Ge6-type RFe6Sn6 compounds (R=Sc,Tm,Lu and Zr)
[34] | Mazet T and Malaman B 2001 J. Alloys Compd. 325 67 | Macroscopic magnetic properties of the HfFe6Ge6-type RFe6X6 (X=Ge or Sn) compounds involving a non-magnetic R metal
[35] | Hurd C M 1972 The Hall Effect in Metals and Alloys (New York: Plenum Press) |