[1] | Aumayr F, Ueda K, Sokell E et al. 2019 J. Phys. B 52 171003 | Roadmap on photonic, electronic and atomic collision physics: III. Heavy particles: with zero to relativistic speeds
[2] | Covington C, Hartig K, Russakoff A, Kulpins R, and Varga K 2017 Phys. Rev. A 95 052701 | Time-dependent density-functional-theory investigation of the collisions of protons and particles with uracil and adenine
[3] | Kirchner T, Gulyás L, Lüdde H, Henne A, Engel E, and Dreizler R 1997 Phys. Rev. Lett. 79 1658 | Electronic Exchange Effects in and Collisions
[4] | Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, and Dorn A 2018 Nat. Phys. 14 1062 | Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules
[5] | Gao J W, Wu Y, Wang J G, Dubois A, and Sisourat N 2019 Phys. Rev. Lett. 122 093402 | Double Electron Capture in Collisions
[6] | Zhu X L, Hu X Q, Yan S C et al. 2020 Nat. Commun. 11 2987 | Heavy N+ ion transfer in doubly charged N2Ar van der Waals cluster
[7] | Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, and Buenker R J 2020 Chin. Phys. Lett. 37 023401 | Single- and Double-Electron Capture Processes in Low-Energy Collisions of N4+ Ions with He*
[8] | Chen S L, Zhou P P, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H, and Gao K L 2020 Chin. Phys. Lett. 37 073201 | Deceleration of Metastable Li+ Beam by Combining Electrostatic Lens and Ion Trap Technique
[9] | Wang X X, Wang K, Peng Y G, Liu C H, Liu L, Wu Y, Liebermann H P, Buenker R J, and Qu Y Z 2021 Chin. Phys. Lett. 38 113401 | Ab Initio Study of Single- and Double-Electron Capture Processes in Collisions of He2+ Ions and Ne Atoms
[10] | Olson R E and Salop A 1977 Phys. Rev. A 16 531 | Charge-transfer and impact-ionization cross sections for fully and partially stripped positive ions colliding with atomic hydrogen
[11] | McDowell M and Janev R 1985 J. Phys. B 18 L295 | Charge exchange and ionisation in collisions of fast partially stripped ions of iron with hydrogen
[12] | Maynard G, Janev R, and Katsonis K 1992 J. Phys. B 25 437 | Electron capture and ionization in collisions of multicharged neon ions with atomic hydrogen
[13] | Eckstein W, Bohdansky J, and Roth J 1991 Nucl. Fusion: Spec. Suppl. (IAEA) 1 51 | PHYSICAL SPUTTERING
[14] | Lindsay B G and Stebbings R F 2005 J. Geophys. Res. 110 A12213 | Charge transfer cross sections for energetic neutral atom data analysis
[15] | Pang S N, Wang F, Sun Y T, Mao F, and Wang X L 2022 Phys. Rev. A 105 032803 | First-principles simulation of the electronic stopping power of He ions in Al at finite temperature
[16] | Baxter M, Kirchner T, and Engel E 2017 Phys. Rev. A 96 032708 | Time-dependent spin-density-functional-theory description of -He collisions
[17] | Eichler J, Tsuji A, and Ishihara T 1981 Phys. Rev. A 23 2833 | Electron capture into partially stripped projectile ions
[18] | Gulyás L, Fainstein P D, and Shirai T 2002 Phys. Rev. A 65 052720 | Extended description for electron capture in ion-atom collisions: Application of model potentials within the framework of the continuum-distorted-wave theory
[19] | Calvayrac F, Reinhard P G, Suraud E, and Ullrich C 2000 Phys. Rep. 337 493 | Nonlinear electron dynamics in metal clusters
[20] | Wang F, Hong X, Wang J, and Kim K S 2011 J. Chem. Phys. 134 154308 | Coordinate space translation technique for simulation of electronic process in the ion–atom collision
[21] | Castro A, Isla M, Martı́nez J I, and Alonso J A 2012 Chem. Phys. 399 130 | Scattering of a proton with the Li4 cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory
[22] | Bubin S, Wang B, Pantelides S, and Varga K 2012 Phys. Rev. B 85 235435 | Simulation of high-energy ion collisions with graphene fragments
[23] | Gao C Z, Wang J, Wang F, and Zhang F S 2014 J. Chem. Phys. 140 054308 | Theoretical study on collision dynamics of H+ + CH4 at low energies
[24] | Ullah R, Artacho E, and Correa A A 2018 Phys. Rev. Lett. 121 116401 | Core Electrons in the Electronic Stopping of Heavy Ions
[25] | Yu W D, Gao C Z, Sato S A, Castro A, Rubio A, and Wei B R 2021 Phys. Rev. A 103 032816 | Single and double charge transfer in the collision within time-dependent density-functional theory
[26] | Simenel C 2010 Phys. Rev. Lett. 105 192701 | Particle Transfer Reactions with the Time-Dependent Hartree-Fock Theory Using a Particle Number Projection Technique
[27] | Sekizawa K and Yabana K 2013 Phys. Rev. C 88 014614 | Time-dependent Hartree-Fock calculations for multinucleon transfer processes in Ca+ Sn, Ca+ Pb, and Ni+ Pb reactions
[28] | Vignale G 1995 Phys. Rev. Lett. 74 3233 | Center of Mass and Relative Motion in Time Dependent Density Functional Theory
[29] | Bates D R and McCarroll R 1958 Proc. R. Soc. A 245 175 | Electron capture in slow collisions
[30] | Tancogne-Dejean N, Oliveira M J, Andrade X et al. 2020 J. Chem. Phys. 152 124119 | Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
[31] | Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36 | Optimization algorithm for the generation of ONCV pseudopotentials
[32] | Perdew J P 1986 Phys. Rev. B 33 8822 | Density-functional approximation for the correlation energy of the inhomogeneous electron gas
[33] | Gómez P A, Marques M A, Rubio A, and Castro A 2018 J. Chem. Theory Comput. 14 3040 | Propagators for the Time-Dependent Kohn–Sham Equations: Multistep, Runge–Kutta, Exponential Runge–Kutta, and Commutator Free Magnus Methods
[34] | Manolopoulos D E 2002 J. Chem. Phys. 117 9552 | Derivation and reflection properties of a transmission-free absorbing potential
[35] | Ludde H J and Dreizler R M 1983 J. Phys. B 16 3973 | Method for the calculation of global probabilities for many-electron systems
[36] | Bender M, Heenen P H, and Reinhard P G 2003 Rev. Mod. Phys. 75 121 | Self-consistent mean-field models for nuclear structure
[37] | Losqui A L C, Zappa F, Sigaud G M, Wolff W, Sant'Anna M M, Santos A C F, Luna H, and Melo W S 2014 J. Phys. B 47 045202 | Absolute cross sections for electron loss, electron capture, and multiple ionization in collisions of Li2+ with argon
[38] | Dmitriev I S, Teplova Y A, Belkova Y A, Novikov N V, and Fainberg Y A 2010 At. Data Nucl. Data Tables 96 85 | Experimental electron loss and capture cross sections in ion–atom collisions
[39] | Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, and Pichl L 2003 Phys. Rev. A 68 012716 | Ab initio study of one- and two-electron transfer processes in collisions of with He at low to intermediate energies
[40] | Quashie E E, Saha B C, Andrade X, and Correa A A 2017 Phys. Rev. A 95 042517 | Self-interaction effects on charge-transfer collisions
[41] | Yu W, Zhang Y, Zhang F S, Hutton R, Zou Y, Gao C Z, and Wei B 2018 J. Phys. B 51 035204 | Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory